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Abstract—Moving vehicle detection from wide area aerial
surveillance is an important and challenging task, which can
be aided by context information. In this paper, we present a
Temporal Context(TC) which can capture the road information.
In contrast with previous methods to exploit road information,
TC does not need to get the location of the road first or to use the
Geographical Information System’s (GIS) information. We first
use background subtraction to generate the candidates, then build
TC based on the candidates that have been classified as positive
by Histograms of Oriented Gradient(HOG) with Multiple Kernel
Learning(MKL). For each positive candidate, a region around
the candidate is divided into several subregions based on the
direction of the candidate, then each subregion is divided into
12 bins with a fixed length; and finally the TC, a histogram,
is built according to the positions of the positive candidates
in 8 consecutive frames. In order to benefit from both the
appearance and context information, we use MKL to combine
TC and HOG. To evaluate the effect of TC, we use the publicly
available CLIF 2006 dataset, and label the vehicles in 102 frames
which are 2672×1200 subregions that contain expressway of the
original 2672× 4008 images. The experiments demonstrate that
the proposed TC is useful to remove the false positives that are
away from the road, and the combination of TC and HOG with
MKL outperforms the use of TC or HOG only.

I. INTRODUCTION

Moving vehicle detection in Wide Area Motion Imagery
(WAMI) is an important task, the result of which can be
applied to monitoring traffic flow, identifying illegal behavior,
etc. A common approach to detect moving vehicles in WAMI is
to generate candidates using background subtraction [1, 2]; as
WAMI frame rates increase the flux tensor model can be used
as a more reliable motion detector [3]. Nevertheless, due to the
large camera motion, 3D parallax and the low contrast between
the vehicles and the background, there are many false positives
among the candidates resulting from background subtraction.

Beyond using the appearance information, recent work
has demonstrated that the contextual information is useful
to boost the object detection task [4–6]. One reason for the
effectiveness of context information is that objects in a scene
always have a physical and reasonable layout, i.e., semantic
context. Intuitively, for moving vehicle detection, the most
useful context information is the road, if we have information
about the road, we can eliminate the false positives which do
not directly appear on the road.

One common way to explore the semantic context is to use
a graphical method to model the relationships among objects

or regions in the scene, such as [4, 5, 7–11]. A common
requirement of these approaches is that in order to learn the
relationships among objects or regions in a scene, we need to
model objects or regions in the scene globally, i.e., objects or
regions are used as context for each other. More specifically,
for the vehicle detection task, if we want to use the road as
context for vehicles, we need to first know where the road is.

In this paper, based on the motivation that along the
direction of the road we can find a relatively large number of
vehicles in several consecutive frames and these vehicles will
cover a continuous region of the road, we propose a novel
Temporal Context(TC) method, which can capture the road
information without detecting the road. In order to build TC,
we first use a background subtraction technique to generate
the candidates, then, we build TC for those candidates that
have been classified as positives by Histograms of Oriented
Gradient(HOG) [12] with multiple kernel learning(MKL) [13–
16]. For each such candidate, we divide a region around the
candidate into several subregions based on the direction of
that candidate, and each subregion is divided into 12 bins.
Finally, the TC, a histogram, is built by calculating the number
positive candidates in 8 consecutive frames lying in each
bin. Figure 1 gives an example of the histograms of TC for
positive and negative candidates classified by HOG with MKL,
from which we can see that the TC for true positives have
smooth consecutive bins that have relatively large values while
the false positives do not. In order to benefit from both the
appearance and context information, MKL [13] is used to
combine TC and HOG. Our experiment is conducted on the
Columbus Large Image Format (CLIF) 2006 dataset [17]. In
order to get both qualitative and quantitative results, vehicles in
102 frames which are 2672×1200 subregions that contain the
expressway road of the original 2672×4008 image are labeled.
The experiment demonstrates that with the same recall, the
combination of TC and HOG outperforms the use of TC or
HOG only, and TC is useful to remove the false positives that
are away from the road.

The rest of the paper is organized as follows. §II discusses
the related work. §III presents the proposed Temporal Con-
text(TC) method. §IV gives the details of the approach for
vehicle detection. §V experimentally demonstrates the effec-
tiveness of the proposed TC and §VI provides conclusions.
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Fig. 1: An Example of TC. (a) shows the classification result
of HOG with MKL, the green and red bounding box indicates
the candidates classified as positive and negative respectively.
(b),(c),(d),(e) are the histograms for candidates 1,2,3,4 in (a)
respectively. Four different colors represent the consecutive
bins for four different directions.

II. RELATED WORK

The research about understanding of wide area motion
imagery has become increasingly popular. Zhao et al. [18] used
the boundary of the car, the boundary of the front windshield
and the shadow as features and integrated these features in
the structure of the Bayesian network. Also, several papers
about vehicle detection and tracking have been published in
recent years [1, 2, 19, 20]. These papers mainly focus on the
tracking task as detection is just conducted as a prerequisite
for tracking. Reilly et al. [1] used background subtraction
to generate the candidates by modeling the background with
10 consecutive stabilized images using a median background

model. Prokaj et al. [2] adopted the similar method as [1]
to perform vehicle detection, while at the same time, they
refined the detected vehicles using the tracking result. Xiao
et al. [20] used a three-frame subtraction scheme to initialize
the tracking, and the road information from an additional co-
registered GIS database as a constraint. Shi et al. [19] first used
the vehicle detection result to construct trajectories, then road
information was estimated by these trajectories and used to
refine the detection result. Aside from the above work, other
studies on general moving object detection and analysis in
WAMI using a variety of methods can be found in [21–26].

The effectiveness of context for object detection tasks has
been well explored and studied in the community. Divvala et al.
[6] gave an empirical study of context for the object detection
task. Besides the spatial layout, the area surrounding the
objects or the neighborhood of the objects can provide useful
information [27, 28]. However, for moving vehicle detection in
wide area motion imagery, the area surrounding the candidates
of vehicles cannot provide enough information, due to the low
contrast between the candidates and the background. Different
approaches to explore contextual information have also been
recently proposed, Song et al. [29] proposed the Context-SVM
(Support Vector Machine) to boost the object classification and
detection by using the outputs from one task as the context of
the other one. Context-SVM is not suitable for the vehicle
detection task in WAMI, since it is hard to categorize this
kind of imagery into different categories. Felzenszwalb et al.
[30] selected the highest score of detections from each of the
k different models (for different object categories) to form a
k-dimensional vector and rescoring a detection using this k-
dimensional feature vector plus the original score, the position
of the bounding box and the image context.

III. THE TEMPORAL CONTEXT

(a) (b)

Fig. 2: Diagram of the histogram bins of TC. (a)The difference
between the estimated direction of a candidate and the direc-
tion of the road is not greater than a threshold, the horizontal
green line is the estimated direction of the candidate; (b)
The difference between the two directions is greater than the
threshold, the horizontal green line is the estimated direction
of the candidate and the red dashed line is the direction of the
road.

Given T consecutive frames I = {I1, I2, I3, ..., IT }, and
a candidate token p in frame i which is from the result of
background subtraction and has been classified as positive
by HOG [12] with MKL [13], we first divide the region
around p into m subregions based on the estimated direction



characterizing a manifold centered at p. Each subregion is
similar to a fan and all the subregions have the same angle
at the center θ as shown in Figure 2. m is determined by
θ, and m = 360/θ. Then, each subregion is divided into 12
consecutive bins with a fixed length l. In our approach, every
candidate obtained from background subtraction technique is
a rectangle, and the direction dp of a candidate is estimated
using the direction of the longer edge of the rectangle. The
value of each bin is the number of candidates lying in the
region associated with each bin and satisfying a constraint.
The constraint is that the difference between the estimated
direction dp of the candidate p and the estimated direction
di of a candidate i that is not greater than a threshold ε, or
di is between θ1 and θ2, the angles of the two edges of the
subregion as shown in Figure 2(a). The second part of the
constraint aims at solving the problem that the directions of a
small number of candidates on the road might be quite different
from most of the candidates on that road. In order to decrease
the difference of TC between a candidate at the center of a
frame and a candidate at the border of a frame, two bins which
are symmetric, e.g. the bin k and bin k′ in Figure 2(a), are
combined into one bin k. The value of the kth bin of candidate
p is

hp(k) = #{i ∈ C ∧ i 6= p ∧ i ∈ R(k)
∧ (|dp − di| 6 ε ∨ θ1 6 di 6 θ2)},

(1)

hp(k
′) = #{i ∈ C ∧ i 6= p ∧ i ∈ R(k′)

∧ (|dp − di| 6 ε ∨ θ1 6 di 6 θ2)},
(2)

hp(k) = hp(k) + hp(k
′), (3)

where C is the set of candidates of I , # is the cardinality
function, and R(k) is the region associated with the kth bin.
So, given the number of subregions m, the dimension of TC
is m×12

2 .

Algorithm 1 Building TC for a Candidate
Input:

p: a candidate
I = {I1, I2, ...IT }: T consecutive frames
C: the set of candidates of I
ε: a threshold

Output:
h: the TC, a histogram, for p

1: for each bin k of h do
2: count← 0, count′ ← 0
3: for each i ∈ C do
4: if i ∈ C ∧ i 6= p ∧ i ∈ R(k) ∧ (|dp − di| 6 ε ∨ θ1 6

di 6 θ2) then
5: count← count+ 1
6: end if
7: k′ ← the symmetric bin of k
8: if i ∈ C ∧ i 6= p ∧ i ∈ R(k′) ∧ (|dp − di| 6 ε ∨ θ1 6

di 6 θ2) then
9: count′ ← count′ + 1

10: end if
11: end for
12: h(k)← count+ count′

13: end for
14: return h

Figure 2(b) is the situation that the direction of most
candidates on a road cannot be estimated correctly because
of the shadow. In this case, the road direction might be quite
different from the estimated direction of candidates, but with
some rotation of the estimated direction of the candidate;
however, the road direction can still be found. The reason for
using the candidates in T consecutive frames is that even when
the traffic is not busy, the candidates in consecutive frames will
be able to cover some consecutive bins which correspond to
a consecutive region of the road due to the moving of the
vehicles. Also, the subregion is similar to a fan, with the
increase of distance from the center of a candidate, where the
width of the region associated with a bin also increases, which
allows a moderate change in the direction of road. From Figure
1, we can see that positive candidates have obvious patterns.
The TC has only two parameters, the number of subregions m
which can be determined by θ, the angle at the center, and the
length l for dividing each subregion. Experiment in §V tests
several θ and l, and there is a large range for choosing these
two parameters.

IV. IMPLEMENTATION DETAILS

A. Registration

Given a set I of T consecutive frames, we need to remove
the camera motion first. As in [1], we use point-matching based
algorithm. Given a reference frame t and another frame t+ i,
we first detect the keypoints in both t and t + i using the
Scale-Invariant Feature Transform (SIFT) [31] and extract a
SIFT descriptor at each keypoint. Then, the keypoints in t+ i
are matched with keypoints in t with FLANN (Fast Library
for Approximate Nearest Neighbors) [32]. Finally, a robust
homography Ht+i

t is estimated using RANSAC (RANdom
SAmple Consensus) [33]. We use the first frame in I as the
reference frame. Other piecewise simplex based approaches
are also possible [34].

B. Generating Candidates

In order to detect the moving vehicles, we use background
subtraction to first generate the candidate detections. As in
[1], we use median image filtering to model the background.
Due to the motion of camera, the more frames we use to
build the background model, the smaller the active area is.
To keep the active area as large as possible and also get a
relatively satisfying background model, we use 8 consecutive
frames to model the background B. Then, we can obtain the
difference image Idt = |It−B|. Since we use homography for
registration, we make an assumption that the scene is planar
which is not true for WAMI. So, pixels belonging to the areas
that contain out of plane objects, e.g., trees, tall buildings,
cannot be well aligned. There is a lot of noise along the edges
of these out of plane objects due to parallax error. The work
in [1] alleviated this problem by subtracting the gradient of
the media background ∇B, i.e., Irdt = Idt − ∇B. Since we
found that due to the misalignment, there is a offset between
the pixels in ∇B that have obvious response and the pixels in
Idt where noise exists, we adopt a different approach. Given
Idt and ∇B, if the value of a pixel at position (i, j) of ∇B is
greater than a threshold, we set the value of the corresponding



pixel at (i, j) of Irdt to 0,

Irdt(i, j) =

{
0 if ∇B(i, j) > δ

Idt(i, j) otherwise
(4)

In our implementation, we found that our TC approach is better
than the approach used in [1]. After getting Irdt, we filter out
the blobs that are too large or too small, and the remaining
blobs are used as the candidates.

C. Classification of Candidates

1) Generalized Multiple Kernel Learing: In order to benefit
from both the appearance information and context information,
multiple kernel learning(MKL) [13, 14] is used for classifica-
tion. The main idea of MKL is to learn an optimal combination
of a set of kernel matrices,

Kopt =
∏
k

Kk(dk) (5)

The objective of the generalized MKL [13, 14] is to learn a
function f(x) = wtφd(x) + b with the kernel kd(xi,xj) =
φt

d(xi)φd(xj). The MKL not only estimates w and b which
is the goal of SVM, but also estimates the kernel parameters d
from the training data. The above problem can be formulated
as the following optimization problem,

Min
d

T (d) subject to d ≥ 0

where T (d) = Min
w,b

1

2
wtw +

∑
i

l(yi, f(xi)) + r(d)

where l is the loss function and r is a regularizer for d.
The optimization includes two steps, in the outer loop, the
kernel parameter d is estimated, and in the inner loop, the
parameters of SVM are estimated with fixed kernel. Varma
et al. [14] used projected gradient descent approach for the
optimization. In order to deal with the inefficiency of the
projected gradient descent optimizer, Spectral Projected Gra-
dient(SPG) was proposed in [13] which can handle millions
of kernels. In this paper, we choose to use SPG-GMKL
(Generalized MKL), and each dimension of the feature vector
is treated as a Radial Basis Function (RBF) kernel. Assuming
the combination of HOG and TC is M dimensions, the optimal
kernel is kd(xi,xj) =

∏M
m=1 e

−dm(xim−xjm)2 .

2) Classification: After background subtraction, we can
get a set C of candidates for I = {I1, I2, ..., IT }. To keep
consistent with background subtraction, T is set to 8. For each
candidate, we normalize it to 24(width) by 32(height) and use
HOG with SPG-GMKL [13] to classify them first, then we
only build TC for those candidates that have been classified
as positive; and for those candidates that have been classified
as negative, the value of each dimension of TC is 0. Then, we
combine TC with HOG through SPG-MKL.

V. EXPERIMENT

A. Dataset

The dataset we use is Columbus Large Image Format
(CLIF) 2006 [17]. The scene of this dataset is a flyover
of the Ohio State University (OSU) from a large format

monochromatic electro-optical platform which is comprised
of a matrix of six cameras and the size of each image is
2672(width) by 4008(height) pixels. Since there is a large area
in each image that does not contain an expressway road, a
2672 × 1200 subregion is used as shown in Figure 3 and
Figure 4. The subregion is very challenging, including not only
horizontal and vertical express ways, but also an overpass. For
the test data, we labeled the vehicles in 102 frames of camera
3, and there are 9364 vehicles in total. For training, we labeled
1730 candidates obtained from background subtraction from
16 frames of camera 1.

(a) (b)

Fig. 3: (a) and (b) are the original images, where the region
between the two red lines is the subregion.

B. Building Classifier

In our experiment, three kinds of classifiers are built, using
Temporal Context(TC) only, using HOG only, and combing TC
and HOG. For HOG, the block size is 12×12, the block stride
is 4×4, the cell size is 6×6 and the number of bins is 6. The
dimension of HOG is 576. To build the classifiers evaluated
on the test data, all the 1730 candidates from camera 1 are
used. Since the classification result of HOG is used to build
TC, if we use 1730 candidates to train a classifier with HOG
which is used to classify the same data to build TC, overfitting
exists. So, we select 367 candidates from the 1730 candidates
to build the classifier with HOG and MKL, which is used
for building TC of the training data. After building TC, we
linearly scale each attribute to the range [0, 1] using the tool
”svm-scale” provided by LIBSVM [35]. For the regularizer of
the kernel weights d of the SPG-GMKL [13], we choose l2
regularization. ε used in Equation 1 and Equation 2 is 10◦.

C. Evaluation Metrics

We use the distance between a positive candidate and the
groundtruth to judge whether it is a true positive. Given the
groundtruth G = {g1, g2, ..., gS}, for a true positive candidate
c, there exists g ∈ G and the distance between the center of g
and the center of c is not greater than 10. For the evaluation
of classifiers built with different kinds of features, we use a
precision-recall curve and AUC(area under curve) to evaluate
the performance. Since we classify the candidates obtained



from background subtraction, the recall can be calculated in
two different ways. One way is to use the number of the actual
groundtruth, S, i.e., the actual number of vehicles in each
image; while another way is to use the number of candidates
which are indeed vehicles as groundtruth, S′. In the following
comparisons, both kinds of precision-recall curves are given.
Without classification, the performance of background subtrac-
tion with the size and the gradient constraint is not satisfying,
as the precision is only 0.398 at the recall 0.854.

D. Choosing θ and l for TC

TC has two parameters, the angle at the center of the
subregion θ and the length l used to divide each subregion.
To seek the best θ, we test 15◦, 30◦, 45◦ and 60◦ with fixed
l = 50. Figure 5, Table I and Table II summarize the results.
From the results we can see that when only TC is used,
45◦ performs best. One reasonable explanation is that small θ
makes the pattern of TC too complicated, while large θ cannot
capture enough information. So, a moderate θ performs best.
When the combination of TC and HOG are used, 45◦ also
performs best, but the advantage is not obvious.

(a) (b)

(c) (d)

Fig. 5: The precision-recall curves for different θ. (a) and (b)
use only TC and are plotted based on S and S′ respectively; (c)
and (d) use the combination of TC and HOG and are plotted
based on S and S′ respectively.

TABLE I: The AUC for different θ of TC
15◦ 30◦ 45◦ 60◦

S 0.738 0.729 0.773 0.748
S′ 0.867 0.856 0.908 0.878

TABLE II: The AUC for different θ of TC+HOG
15◦ 30◦ 45◦ 60◦

S 0.807 0.808 0.811 0.808
S′ 0.948 0.950 0.953 0.949

To seek the best l, we test 30, 40, 50, 60, 70 with fixed
θ = 45◦. From Table III and Table IV, 30 performs best when

only TC is used, and 40 performs best when TC and HOG are
combined. However, from Figure 6(c), Table V and Table VI,
we can see that when the recall is high, the precision of 50
is a little better. Since a better performance at low recall does
not have practical use in the vehicle detection application, 50
is chosen for l. Though 50 is chosen for l, TC is not very
sensitive to l, when the recall is high, the difference among
30, 40 and 50 is small.

(a) (b)

(c) (d)

Fig. 6: The precision-recall curves for different l. (a) and (b)
use only TC and are plotted based on S and S′ respectively;
(c)and (d) use the combination of TC and HOG and are plotted
based on S and S′ respectively.

TABLE III: The AUC for different l of TC.
30 40 50 60 70

S 0.783 0.779 0.773 0.760 0.743
S′ 0.920 0.915 0.908 0.892 0.873

TABLE IV: The AUC for different l of TC+HOG.
30 40 50 60 70

S 0.812 0.813 0.811 0.802 0.783
S′ 0.954 0.955 0.953 0.941 0.920

TABLE V: The precision for 3 different recall of TC with
different l using S.

30 40 50 60 70
0.78 0.899 0.905 0.912 0.906 0.898
0.80 0.886 0.891 0.894 0.893 0.888
0.82 0.856 0.854 0.854 0.859 0.854

E. Quantitative and Qualitative Comparison

To demonstrate that TC is useful to remove false positive
candidates away from the road, the performance of TC, HOG,
and the combination of TC and HOG are evaluated using SPG-
GMKL [13]. We normalize the candidates from background
subtraction to 24 × 32, and compute the HOG for each



(a)

(b)
Fig. 4: (a) and (b) are subregions for 3(a) and 3(b) respectively.

TABLE VI: The precision for 3 different recall of TC+HOG
with different l using S.

30 40 50 60 70
0.78 0.942 0.945 0.946 0.931 0.900
0.80 0.923 0.928 0.934 0.923 0.896
0.82 0.863 0.873 0.881 0.887 0.886

candidate. For TC, 45◦ and 50 are used for θ and l respectively.
The dimension of TC is 48. Figure 9, Table VII and Table
VIII list the quantitative results. The combination of TC and
HOG which can make use of both the appearance and context
information outperforms the only use of TC or HOG. When
comparing AUC, the advantage of TC+HOG is tiny. However,
Figure 9 and Table VII shows that the advantage is obvious
when the recall rate is high, which is useful in practice.
Compared to the performance of background subtraction with
the constraints on the size of candidates and the gradient of
background model, the classification can obviously boost the
detection performance. Using the combination of TC and HOG
with SPG-GMKL [13], the precision can boost to 0.881 at the
recall 0.82.

Figure 7 and Figure 8 are some qualitative results. There
are very few false positives on the road for TC, HOG and
the combination of TC and HOG. TC is useful to remove
false positives that are away from the road with a very small
number of misclassified candidates on the road; while HOG

can almost capture all the vehicles on the road with some false
positives away from the road. Figures 7(c), 7(f), 8(c) and 8(f)
demonstrate the benefit of the combination of TC and HOG.
By making use of both the appearance and context information,
we can obviously reduce the number of false positives without
sacrificing recall.

(a) (b)

Fig. 9: The precision-recall curve for TC, HOG and the
combination of TC and HOG.(a) is plotted based on S, (b)
is plotted based on S′.

TABLE VII: The AUC for TC, HOG and TC+HOG.

TC HOG TC+HOG
S 0.773 0.805 0.811
S′ 0.908 0.945 0.953



(a) (b) (c)

(d) (e) (f)

Fig. 7: The classification result. The green, yellow, red, and blue bounding boxes indicate true positive, false positive, true negative,
false negative respectively. (a), (b), (c) are the results of TC, HOG, TC+HOG respectively. (d),(e),(f) are the enlargement for the
part in the black bounding box in (a),(b),(c) respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 8: The classification result. The green, yellow, red, and blue bounding boxes indicate true positive, false positive, true negative,
false negative respectively. (a), (b), (c) are the results of TC, HOG, TC+HOG respectively. (d),(e),(f) are the enlargement for the
part in the black bounding box in (a),(b),(c) respectively.



TABLE VIII: The precision of TC, HOG and TC+HOG at
different recall using S.

TC HOG TC+HOG
0.70 0.932 0.953 0.970
0.72 0.929 0.947 0.966
0.74 0.925 0.937 0.960
0.76 0.920 0.926 0.955
0.78 0.912 0.915 0.946
0.80 0.894 0.893 0.934
0.82 0.854 0.841 0.881
0.854 0.399 0.442 0.442

VI. CONCLUSION

We propose using the Temporal Context(TC) which can
capture the road information in the moving vehicle detection
task of wide area motion imagery. To make use of both the
appearance and context information for classification, we use
multiple kernel learning(MKL) to combine these two kinds
of features. In order to demonstrate the effectiveness of the
proposed TC, we label 9364 vehicles in 102 frames of the
CLIF 2006 dataset, and the experimental results show that TC
is very useful to remove false positives away from the road. In
the future, we will investigate the idea for building TC further
and extend TC to a more comprehensive robust TC method.
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