
Chapter 5

The Objective Evaluation Index (OEI) for Evaluation of
Night Vision Colorization Techniques

Yufeng Zheng, Wenjie Dong, Genshe Chen and
Erik P. Blasch

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/56948

1. Introduction

A night vision colorization technique can produce colorized imagery with a naturalistic and
stable color appearance by processing multispectral night vision (NV) imagery. The multi‐
spectral images typically include visual-band (e.g., red, green, and blue (RGB), or intensified)
imagery and infrared imagery (e.g., near infrared (NIR) and long wave infrared (LWIR)).
Although appropriately false-colored imagery is often helpful for human observers in
improving their performance on scene classification and reaction time tasks (Waxman et al.,
1996; Essock et al., 1999), inappropriate color mappings can also be detrimental to human
performance (Toet et al., 2001; Varga, 1999). A possible reason is lack of physical color
constancy. Another drawback with false coloring is that observers need specific training with
each of the false color schemes so that they can correctly and quickly recognize objects; whereas
with colorized nighttime imagery rendered with natural colors, users should be able to readily
recognize and identify objects without any training.

There are several night vision (NV) colorization techniques developed in past decades. Toet
(2003) proposed a NV colorization method that transfers the color characteristics of daylight
imagery into multispectral NV images. Essentially, this color-mapping method matches the
statistical  properties  (i.e.,  mean and standard deviation)  of  the NV imagery to that  of  a
natural daylight color image (manually selected as the “target” color distribution). Zheng
and Essock (2008) presented a “local  coloring” method that can colorize the NV images
more like daylight imagery by using histogram matching. The local-coloring method renders
the  multispectral  images  with  natural  colors  segment  by  segment  (i.e.,  “segmentation-
based”),  and also provides automatic  association between the source and target  images.
Zheng (2011) recently introduced a channel-based color fusion method, which is fast enough

© 2013 Zheng et al.; licensee InTech. This is a paper distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for real-time applications. Note that the term “color fusion” in this chapter refers to combing
multispectral  images into a  color-version image with the purpose of  resembling natural
scenes. Hogervorst and Toet (2008 & 2012) recently proposed a new color mapping method
using a lookup table (LUT). The LUT is created between a false-colored image (formed with
multispectral NV images) and its color reference image (aiming at the same scene but taken
at daytime). The colors in the resulting colored NV image resemble the colors in the daytime
color image. This LUT-mapping method runs fast for real-time implementations. The LUT-
mapping method and the statistic-matching method are also summarized in their recent
paper (Toet & Hogervorst, 2012). Most recently Zheng (2012) developed a joint-histogram
matching method for NV colorization.

The quality of colorized images can be assessed by subjective and/or objective measures.
However, subjective evaluation normally costs time and resources. Moreover, the subjec‐
tive evaluation methods cannot be readily and routinely used for real-time and automat‐
ed  systems.  On  the  other  hand,  objective  evaluation  metrics  can  automatically  and
quantitatively measure the image qualities (Liu et al., 2012 & Blasch et al., 2008). Over the
past decade, many objective metrics for grayscale image evaluations have been proposed
(Alparone et al., 2004; Wald et al., 1997; Tsagaris & Anastassopoulos, 2006). However, the
metrics for grayscale images cannot be directly extended to the evaluations of  colorized
images.  Recently,  some objective  evaluations  of  color  images have been reported in  the
literature.  To objectively assess  a  color  fusion method,  Tsagaris  (2009)  proposed a  color
image fusion measure (CIFM) by using the amount of common information between the
source images and the colorized image, and also the distribution of color information. Yuan
et al. (2011) presented an objective evaluation method for visible and infrared color fusion
utilizing four  metrics:  image sharpness  metric,  image contrast  metric,  color  colorfulness
metric,  and color naturalness metric.  In this chapter,  we introduce an objective evaluation
index  (OEI)  to  quantitatively  evaluate  the  colorized images.  Given  a  reference  (daylight
color)  image  and  several  versions  of  the  colorized  NV  images  from  different  coloring
techniques, all color images are first converted into International Commission on Illumina‐
tion (CIE) LAB space, with dimension L for lightness and a and b for the color-opponent
dimensions (Malacara, 2002). Then the OEI metric is computed with the four established
metrics, phase congruency metric (PCM), gradient magnitude metric (GMM), image contrast
metric (ICM), and color natural metric (CNM).

Certainly, a color presentation of multispectral night vision images can provide a better visual
result for human users. We would prefer the color images resembling natural daylight pictures
that we are used to; meanwhile the coloring process shall be efficient enough ideally for real
time applications. In this chapter, we will discuss and explore how to objectively evaluate the
image qualities of colorized images. The remainder of this chapter is organized as follows. Six
NV colorization techniques are briefly reviewed in Section 2. Next, four image quality metrics
are described in Section 3. A new colorization metric, objective evaluation index (OEI), is
introduced in Section 4. The experiments and discussions are presented in Section 5. Conclu‐
sions are finally drawn in Section 6.
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2. Overview of night vision colorization techniques

All color mapping methods described in Subsections 2.2-2.6 are performed in lαβ color space.
Thus the color space conversion from RGB to lαβ must be done prior to color mapping, and
then the inverse transformation to RGB space is necessary after the mapping. The details of
lαβ color space transformation are given elsewhere (Toet, 2003; Zheng & Essock, 2008).
Certainly, two images, a source image and a target image, are involved in a color mapping
process. The source image is usually a color fusion image (in Subsections 2.2-2.5) or a false-
colored image (in Subsection 2.6); while the target image is normally a daylight picture
containing the similar scene. The target image may have a different resolution as depicted in
Subsections 2.2-2.5; however, the LUT described in Subsection 2.6 is established using the
registered target (reference) image.

2.1. Channel-based color fusion (CBCF)

A fast color fusion method, termed as channel-based color fusion (CBCF), was introduced to
facilitate realtime applications (Zheng, 2011). Notice that the term of “color fusion” means
combing multispectral images into a color-version image with the purpose of resembling
natural scenes. Relative to the “segmentation-based colorization” (Zheng & Essock, 2008),
color fusion trades the realism of colors with speed.

The general framework of channel-based color fusion is as follows, (i) prepare for color fusion,
preprocessing (denoising, normalization and enhancement) and image registration; (ii) form
a color fusion image by properly assigning multispectral images to red, green, and blue
channels; (iii) then fuse multispectral images (gray fusion) using aDWT algorithm (Zheng et
al., 2005); and, (iv) replace the value component of color fusion in HSV color space with the
gray-fusion image, and finally transform back to RGB space.

In NV imaging, there may be several bands of images available, for example, visible (RGB),
image intensified (II), near infrared (NIR), medium wave infrared (MWIR), long wave infrared
(LWIR). Upon the available images and the context, we only discuss two of two-band color
fusions of (II ⊕  LWIR), (NIR ⊕  LWIR). The symbol ‘⊕ ’ denotes the fusion of multiband
images.

A color fusion of NIR and LWIR is formulated by,
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where S[0.1,I_Gmax]
[0.2,1]  denotes piecewise contrast stretching defined in Eq. (2) and I_Gmax =

min([μNIR + 2σNIR],0.8), min() is an operation to get the minimal number; [1.0- ILWIR] is to invert
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LWIR image; symbol ‘•’ means element-by-element multiplication; VF is the value component
of FC in HSV space, Fus() means image fusion operation using aDWT algorithm (Zheng et al.,
2005). Although the limits given in contrast stretching are obtained empirically according to
the night vision images that we had, it is viable to formulate the expressions and automate the
fusion based upon a set of conditions (imaging devices, imaging time, and application
location). Notice the transform parameters in Eqs. (1) were applied to all color fusions in our
experiments (see Fig. 3d).
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where IS is the scaled image, I0 is the original image; IMin and IMax are the maximum and
minimum pixel values in I0, respectively; LMin and LMax are the expected minimum and
maximum pixel values in IS, respectively. After the image contrast stretching, IS ∈  [ LMin, LMax].

2.2. Statistic matching

A statistic matching (stat-match) is used to transfer the color characteristics from natural
daylight imagery to false color night-vision imagery, which is formulated as:

IC
k =(IS

k −μS
k )⋅

σT
k

σS
k + μT

k , for k ={ l ,  α,  β }, (3)

where IC is the colored image, IS is the source (false-color) image in lαβ space; μ denotes the
mean and σ denotes the standard deviation; the subscripts ‘S’ and ‘T’ refer to the source and
target images, respectively; and the superscript ‘k’ is one of the color components: {l, α, β}.

After this transformation, the pixels comprising the multispectral source image have means
and standard deviations that conform to the target daylight color picture in lαβ space. The
colored image is transformed back to the RGB space through the inverse transforms (Zheng
& Essock, 2008; see Fig. 3e).

2.3. Histogram matching (HM)

Histogram matching (i.e., histogram specification) is usually used to enhance an image when
histogram equalization fails (Gonzalez & Woods, 2002). Given the shape of the histogram that
we want the enhanced image to have, histogram matching can generate a processed (i.e.,
matched) image that has the specified histogram. In particular, by specifying the histogram of
a target image (with daylight natural colors), a source image (with false colors) resembles the
target image in terms of histogram distribution after histogram matching.

Histogram matching (hist-match) can be implemented as follows. First, the normalized
cumulative histograms of source image and target image (hS and hT) are calculated, respectively.
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where N is the total number of pixels in the image, nk is the number of pixels that have gray
level uk, and L is the number of gray (bin) levels in the image. Typically, L = 256 for a digital
image. But we can round the image down to m (m < L, e.g., m = 64) levels, and thus its histogram
is called m-bin histogram. Clearly, S(uk) is a non-decreasing function. Similarly, hT = T(vk) can
be computed (see the “Target” curve in Fig. 1c).

Second, considering hS = hT (i.e., S(uk) = T(vk)) for histogram matching, the matched image is
accordingly computed as

1[ ( )], 0,1,2,..., 1.k kv T S u k L-= = - (5)

It is straightforward to find a discrete solution of the inverse transform, T-1[S()] as both T() and
S() can be implemented with look up tables.

Similar to the statistic matching (described in Subsection 2.2), histogram matching also serves
for color mapping (see Fig. 3f) and is performed component-by-component in lαβ space.
Specifically, with each color component (say the α component, treated as a grayscale image)
of a false-colored image, we can compute S(uk). With a selected target image, T(vk) can be
calculated with regard to the same color component (say α). Using Eq. (5) the histogram
matching can be completed regarding the color component (α). Histogram matching and
statistic matching can be applied separately or jointly. When applied together, for instance, it
is referred to as “statistic matching then histogram matching” (Zheng & Essock, 2008).

2.4. Joint histogram matching (JHM)

As described in Subsection 2.3, histogram matching is applied to each color component (plane)
separately. It is highly possible to distort the color distributions of the mapped image (see Fig.
3f). To avoid color distortion, we introduce a new color mapping method, joint histogram
matching (joint-HM).

In lαβ space, α and β represent the color distributions; while l is the intensity component. A
joint histogram (also called 2D histogram) of two color planes (α versus β) is calculated and then
matched from source to target. The intensity component (l) is matched individually. The joint
histogram is actually the joint (2D) intensity distribution of the two images, which is often used
to compute the joint entropy (Hill & Batchelor, 2001) for image registration.

How to calculate the normalized cumulative histogram (denoted as h) from a 2D joint
histogram (denoted as HJ) needs further discussion. To do histogram matching, h is expected
to be a non-decreasing function. We propose to form a one-dimensional (1D) histogram by
stacking HJ column-by-column and then perform histogram matching as defined in Eq. (10).
Of course, to correctly index a 1D transform (T-1()), the proper calculation of um (with m bins)
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using two gray (bin) levels is expected. If HJ is computed as (β vs. α), its matching process is
denoted as joint-HM(βα). Eventually, the histogram of the mapped image is sort of tradeoff
between two histograms, “Source” and “Target”. This is expected since we want no color
distortion (i.e., preserving its own colors to some extent) during color mapping (see Fig. 3g).

2.5. Statistic matching then joint-histogram matching (SM-JHM)

The joint-HM can be applied together with statistic matching such as “stat-match then joint-
HM”, which usually result a better NV colorization. The statistic matching globally "paints"
the image, while the joint-HM colors is more like the daylight picture in details (see Fig. 3h).

2.6. Lookup table (LUT)

Hogervorst and Toet (2008) proposed a color mapping method using a lookup table (LUT).
The LUT is created using a false-colored image (formed with two-band NV images) and the
reference (i.e., target) daylight image. This method yields a colored NV image similar to the
daytime image in colors. The implementation of this LUT method is described as follows.

1. Create a false-colored image (of 3 color planes) by assigning LWIR image to R, NIR image
to G plane, and zeros to B, respectively;

2. Build RG colormap (i.e., a 256×256 LUT) and convert the false-colored image to an indexed
image (0 to 65535) associated with the RG colormap;

3. For all pixels in the indexed false-colored image whose index value equals 0:

a. Locate all corresponding pixels in the reference (i.e., target) color image (that must
be strictly aligned with the false-colored image);

b. Calculate the averaged lαβ values of those corresponding pixels and then convert
them back to RGB values;

c. Assign the RGB values to index 0 in the lookup table;

4. Vary the index value from 2 to 65535 and repeat the processes described in Step 3. At the
end, the LUT will be established.

Once the LUT is created, the LUT-based mapping procedure is simple and fast (see Fig. 3i),
and thus can be deployed in realtime. However, the LUT creation thoroughly relies on the
aligned reference image aiming at the same scene. Any misalignment, using a different
reference color image, or coloring a different NV imagery (i.e., aiming at different direction),
will usually result a poor colorization (see Fig. 5i).

3. Four image quality metrics

Three image quality metrics for grayscale images and one metric for color images are reviewed
in this section. The color-related metrics are defined in the CIELAB space (Malacara, 2002)
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specified by the International Commission on Illumination. The perceptually uniform CIELAB
space consists of an achromatic luminosity component L* (black-white) and two chromatic
values a* (green-magenta) and b* (blue-yellow). The coordinates L*a*b* (CIE 1976) can be
calculated using the CIE XYZ tristimulus values (Malacara, 2002).

3.1. Phase Congruency Metric (PCM)

The phase congruency (PC) model is also called the “local energy model” developed by Morrone
et al. (1986). This model postulates that the features in an image are perceived at the points
where the Fourier components are maximal in phase. Based on the physiological and psycho‐
physical evidences, the PC theory provides a simple but biologically plausible model of how
mammalian visual systems detect and identify the features in an image. PC can be considered
as a significance measure of local structures in an image.

According to the definition of PC (Morrone et al., 1986), there are many different implemen‐
tations of PC map developed so far. A widely-used method developed by Kovesi (1999) is
adopted in this chapter. Given a 1D image f(x), Mn

e and Mn
o represent the even-symmetric and

odd-symmetric filters at scale n, respectively. Mn
e and Mn

o form a quadrature pair: en(x) and
on(x). Responses of the quadrature pair form a response vector:
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and the local amplitude at scale n is
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The one-dimensional (1D) phase congruency metric (PCM) can be computed as
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where ε is a small positive constant.
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In order to calculate the quadrature pair of filters Mn
e and Mn

o, Gabor filters (Gabor, 1946) or
log-Gabor filters (Mancas-Thillou & Gosselin, 2006) can be applied. In this chapter, we use log-
Gabor filters (e.g., wavelets at scale n = 4) due to its following two features: (i) log-Gabor filters,
by definition, have no direct current (DC) component; and (ii) the transfer function of the log-
Gabor filter has an extended tail at the high frequency end, which makes it more capable to
encode natural images than ordinary Gabor filters (Zhang et al., 2011). The transfer function
of a log-Gabor filter in the frequency domain is

2
0

2
[log( )]

2= ,( ) reG
w w

sw
- (10)

where ω0 is the filter's center frequency and σr  controls the filter's bandwidth.

To compute the PCM of two-dimensional (2D) grayscale images, we can apply the 1D analysis
over several orientations and then combine the results according to some rules. The 1D log-
Gabor filters described above can be extended to 2D ones by applying Gaussian function across
the filter perpendicular to its orientation (Kovesi, 1999; Fischer et al., 2007; Wang et al., 2008).
The 2D log-Gabor function has the following transfer function

22
0

2 2

( )[log( )]
2 2

2( ) = ,,
j

r
j e eG q

q qw w

s sw q
-

- -

×
(11)

where θj=( jπ) / (2J ) and j = 0, 1, 2,..., J‒1. J is the number of orientations and σθ determines the
filter's angular bandwidth. By modulating ω0 and θj and convolving G2 with the 2D image, we
get a set of responses at each point (x, y) as en,θj

(x,y ),on,θj
(x,y )] . The local amplitude at scale n

and orientation θj is

2 2
, , ,= ( , ) ( , ).n n nj j j

A e x y o x yq q q+ (12)

and the local energy along orientation θj is

2 2= ( , ) ( , ).
j j j

E F x y H x yq q q+ (13)

where

, ,( , ) = ( , ), ( , ) = ( , ).n nj j j jn n
F x y e x y H x y o x yq q q qå å (14)

The two-dimensional PCM at (x, y) is defined as
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where ε is a small positive constant. It should be noted that PC2D(x,y) is a real number within
[0,1]. The phase congruency metric (PCM) of an image is defined as
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where M×N is the size of the image. The range of PCM is [0,1].

3.2. Gradient Magnitude Metric (GMM)

The image gradient magnitude (GM) is computed to encode contrast information. PC and GM
are complementary and they reflect different aspects of the HVS (human visual system) in
assessing the local image quality. The GM measures the sharpness of an image. The perception
of sharpness is related to the clarity of detail of an image. Image gradient computation is a
traditional topic in image processing. Gradient operators can be expressed by convolution
masks. One of commonly used gradient operators is the Sobel operator. The partial derivatives
of image f(x, y), Gx and Gy, along horizontal and vertical directions using the Sobel operators
are

1 0 1 1 2 1
1 1= 2 0 2 * ( , ),   = 0 0 0 * ( , )
4 4

1 0 1 1 2 1
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é ù é ù-
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The GM of f(x, y) at pixel (x, y) is defined as

2 2( , ) = .x yG x y G G+ (18)

The averaged GM over all pixels is called image gradient magnitude metric (GMM),

2 2

, ,

1 1= ( , ) = ,x y
x y x y

GMM G x y G G
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+å å (19)
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where M×N is the size of the image.

3.3. Image Contrast Metric (ICM)

An image with excellent contrast has a wide dynamic range of intensity level and appropriate
intensity. Both the dynamic range of intensity level or the overall intensity distribution of the
image can be provided by a histogram. A global contrast metric is proposed using the
histogram character. The histogram of image with levels in the range [0, N-1] is a frequency-
distribution function defined as the overall intensity distribution of an image

( ) = ,k kh X n (20)

where X k  is the k-th level of input and nk  is the number of the pixels in the image having level
xk . The probability density function (PDF) is computed by

( ) = ,k kP X n n (21)

where n is the total number of the pixels of the image. The dynamic range value β is defined
as

1

=0
= ( ),

L

k
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-
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k
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S X
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The dynamic range matrix α of histogram is defined as

= ,
2N

ba
b-

(24)

where α∈  [0,1] and a larger value of α means a wider dynamic range in the histogram, which
leads to better contrast. The image contrast metric is defined as

1

=0
= ( ).

N
k

k
k

X
C P X

N
a

-

å (25)

For color images, the image contrast metric is determined by both gray contrast and color
contrast. Because human perception is more sensitive to the luminance on contrast evaluation,
we employ L* channel in the CIELAB space to evaluate the color contrast. Thus, image contrast
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is determined by the histogram of gray intensity and the histogram of color luminance L* (see
Fig. 1). For the gray intensity I, the gray contrast metric is defined as

1

=0
= ( ),

NI
k

g I k
k

I
C P I

N
a

-

å (26)

where αI  and P(Ik ) can be calculated as above for gray intensity. For L* channel, the color
contrast metric is

1* *
*

=0 *
= ( ),

N
L

k
c c k

k L

L
C P L

N
a

-

å (27)

where αc and P(L k ) can be calculated as above for L* channel. The global image contrast
metric (ICM) is defined as

2 2
1 2= ,g cICM C Cw w+ (28)

where ω1 and ω2 are the weights of Cg  and Cc. For simplicity, we choose ω1=ω2= 0.5. ICM varies
within [0,1]. The evaluation of image contrast metric of color fusion image is shown in Fig. 1.

Gray contrast 
metric

(gray image) 

Convert to
Gray image

Color contrast 
metric 

( L* channel)

Convert to 
CIELAB space

Combine to 
global ICM

ICM
Colorized

Image

Figure 1. Diagram of calculation of the contrast metric.

3.4. Color Natural Metric (CNM)

Given a daylight image f1(x, y) and a colorized image f2(x, y), if a colorized image is similar to
the daylight image then the colorized image is considered as of a good quality. Since a human
is sensitive to hue in addition to luminance, we compare the a* and b* channels of the reference
image with that of the colorized image using the gray relational analysis (GRA) theory (Ma et
al., 2005).
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We first convert two images, f1 and f2, to L*a*b* space. L i(x,y), ai(x,y), and bi(x,y) are the L*a*b*

values of f i at pixel (x, y). The gray relation coefficient between a1 and a2 at pixel (x, y) is defined
as

* * * *
1 2 1 2

* * * *
1 2 1 2

| ( , ) ( , )| 0.5 | ( , ) ( , )|maxmaxminmin
( , ) = ,

| ( , ) ( , )| 0.5 | ( , ) ( , )|maxmax
i j i j

a

i j

a i j a i j a i j a i j
x y
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x

e

- + -

- + - +
(29)

where ε is a small positive constant.

The gray relation coefficient between b1 and b2 at pixel (x, y) is defined as

* * * *
1 2 1 2
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In the definitions of ξa(x,y) and ξb(x,y), min() and max() are operated over whole image.
However, it is possible that min() and max() are operated over a small neighborhood of (x, y).

The gray rational degrees of a* and b* information for two images are defined as

( , )
= ( , ) ( , ),a a

x y
R x y x yw xå (31)

( , )
= ( , ) ( , ),b b

x y
R x y x yw xå (32)

where ω(x,y) is the weight of the gray rational coefficient, which satisfies

( , )
( , ) = 1.

x y
x ywå (33)

For simplicity, we choose ω(x,y)=
1

M × N  where M and N are the length of vectors x and y

respectively.

The color natural metric (CNM) is defined as

= .a bCNM R R (34)

CNM varies within [0,1]; the larger the CNM, the more similar the two images.
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4. Objective Evaluation Index (OEI)

With the four metrics defined in Section 3, a new objective evaluation index (OEI) is proposed to
quantitatively evaluate the qualities of colorized images. Given the reference image f1 and the
colorized image f2, the OEI is calcualted in two steps. First the local similarity maps of the two
images are computed, and then the similarity maps are integrated into a single similarity score.

The two images are first converted into L*a*b* space. For L* information, the PC maps are
calculated and denoted as PC1 and PC2 for f1 and f2 images, respectively. The similarity measure
between PC1 and PC2 at pixel (x, y) is defined as

1 2 1
2 2
1 2 1

2 ( , ) ( , )
( , ) = ,

( , ) ( , )PC
PC x y PC x y K

S x y
PC x y PC x y K

+

+ +
(35)

where K1 is a positive constant. In practice, the determination of K1 depends on the dynamic
range of PC values. SPC  varies within [0,1]. Similarly, the similarity measure based on the two
GM values is defined as

1 2 2
2 2
1 2 2

2 ( , ) ( , )
( , ) = ,

( , ) ( , )G
G x y G x y K

S x y
G x y G x y K

+

+ +
(36)

where K2 is a positive constant. SG varies within [0,1]. Then, SPC(x,y) and SG(x,y) are combined
into one similarity measure, SL (x), as follows

1 2( , ) = [ ( , )] [ ( , )] ,L PC GS x y S x y S x yl l (37)

where λ1 and λ2 are parameters to adjust the relative importance of PC and GM features.

With the aid of the similarity SL (x,y) at each pixel (x, y), the overall similarity between f1 and
f2 can be calculated with the averaged SL (x,y) over all pixels. However, the image saliency
(i.e., local significance) usually varies with the pixel location. For example, edges convey more
crucial information than smooth areas. Specifically, a human is sensitive to phase congruent
structures (Henriksson et al., 2009), and thus a larger PC(x, y) value between f1 and f2 implies
a higher impact on evaluating the similarity between f1 and f2 at location (x, y). Therefore, we
use PCmax(x,y)=max PC1(x,y ), PC2(x,y)  to weigh the importance of SL (x,y) in formulating
the overall similarity. Accordingly, the objective evaluation index (OEI) between f1 and f2 is
defined as follows

1
max

( , ) 32

max
( , )

( , ) ( , )
= ( ) ( ) ,

( , )

L
x y

ICM

x y

PC x y S x y
OEI S CNM
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æ ö
ç ÷

´ ´ç ÷
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(38)
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where

max 1 2( , ) = max[ ( , ), ( , )],PC x y PC x y PC x y (39)

1 2 3
2 2

1 2 3

2 ( ) ( )
= ,

( ) ( )ICM
ICM f ICM f K

S
ICM f ICM f K

´ +

+ +
(40)

where CNM is previously defined and K3 and γi (i = 1,2,3) are positive constants. The diagram
of calculating OEI is shown in Fig. 2. The range of OEI is [0,1]. The larger the OEI value of a
colorized image is, the more similar (i.e., the better) the colorized image is to the reference
image. Error pooling is the integration of methods with tradeoffs between γ1, γ2, and γ3.

ICM1

Error
Pooling

OEI

Reference
Image

Gray image

L*a*b* space

PC1

G1

CNM

L*

a*
b*

ICM2Gray image

L*a*b* space

PC2

G2

L*

a*
b*

Colorized
Image

Figure 2. Diagram of calculating OEI in L*a*b* space.

γ1, γ2, and γ3 are the weights of three components in the OEI metric. Selection of γi is critical
for the OEI calculation. The values of γi are empirically decided, and the typical values of γ1

and γ2 are between 0.8~1.1 and γ3 is between 0.05~0.2. Ki (i = 1,2,3) are constants to increase the
metric stability. In our experiments presented in Section 6, we chose γ1=γ2= 1, γ3= 0.2; K1 = 0.85,
K2 = 160, K3 = 0.001; and λ1 =λ2 =1.
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5. Experimental results and discussions

In our experiments, five triplets of multispectral NV images (as shown in Figs. 3-7; collected
at Alcorn State University), color RGB, near infrared (NIR) and long wave infrared (LWIR),
were colorized by using six different coloring methods as described in Section 2. The three-
band input images are shown in Figs. 3-7a, b and c, respectively. The image resolutions and
its taken time are given in figure captions. The RGB images and LWIR images were taken by
a FLIR SC620 two-in-one camera, which has LWIR camera (of 640×480 pixel original resolution
and 7.5~13 μm spectral range) and an integrated visible-band digital camera (2048×1536 pixel
original resolution). The NIR images were taken by a FLIR SC6000 camera (640×512 pixel
original resolution and 0.9~1.7 μm spectral range). Two cameras (SC620 and SC6000) were
placed on the same fixture and turned to aim at the same location. The images were typically
captured during sunset time and dusk time during a fall season. One exception is shown in
Fig. 7, which was taken at noon time.
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          (g)                             (h)                     (i) 
Fig. 3. Night-vision coloring comparison (Case# AT008 – taken at sunset time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). Notice that the contrasts of all color images were increased 
by 10%, and the brightness of (a) and (i) were increased by 10%. 
 

 

 

 

 

Figure 3. Night-vision coloring comparison (Case# AT008 – taken at sunset time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a). Notice that
the contrasts of all color images were increased by 10%, and the brightness of (a) and (i) were increased by 10%.
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Of course, image registration and fusion (Hil & Batchelor, 2001) were applied to the three band
images shown in Figs. 3-7, where manual alignment was employed to the RGB image shown
in Figs. 5-6a since they are so dark and noisy. To better present the color images (including the
daylight RGB images and the colorized NV images), contrast and brightness adjustments (as
described in figure captions) were applied. Notice that piecewise contrast stretching (Eq. (2))
was used for NIR enhancement. As referred in Eq. (1d), the fused images (shown elsewhere
(Zheng & Essock, 2008)) were obtained using the aDWT algorithm (Zheng et al., 2005). The
channel-based color fusion (CBCF, defined in Eqs. (1)) was applied to the NIR and LWIR
images (shown in Figs. 3-7b & c), and the results are illustrated in Figs. 3-7d. The resulted
images from two-band color fusion (Figs. 3-7d) resemble natural colors, which makes scene
classification easier. The paved ground appears reddish since they have strong heat radiations
(at dusk time) and thus causes strong responses in LWIR images. In the color-fusion images,
the trees, buildings and grasses can be easily distinguished from ground (parking lots) and
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           (g)                             (h)                      (i) 
Fig. 4. Night-vision coloring comparison (Case# AT009 – taken after sunset time; 
640×480 pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The 
colorized images using channel-based color fusion of (NIR LWIR), statistic-matching, 
and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-
match then joint-HM, and LUT-mapping, respectively. The settings in the color-
mappings of (e-i) are source = (d) and target = (a). Notice that the contrasts of all color 
images were increased by 10%, and the brightness of (a) was increased by 10%. 
 

 

 

 

 

Figure 4. Night-vision coloring comparison (Case# AT009 – taken after sunset time; 640×480 pixels): (a-c) Color RGB,
NIR, and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statis‐
tic-matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a). Notice
that the contrasts of all color images were increased by 10%, and the brightness of (a) was increased by 10%.
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sky. For example, the car is clearly identified in Fig. 5d, where the water area (between ground
and trees and shown in cyan color) is certainly noticeable. However, it is hard to realize any
water area in the original images (Figs. 5a-c).

All color mapping methods were applied to the five triplets and their results are presented in
Figs. 3-7. The source images are the color-fusion images (Figs. 3-7d), while the target images
are the color RGB images (Figs. 3-4a & Fig. 8a-b). Figs. 5-6a cannot be used as the target images
since they are too dark and noisy. Figs. 3-7e show the colored images with the statistic matching
(SM) method, which are more similar to the daylight pictures in contrast with the color-fusion
images. The five results (Figs. 3-7e) are equivalently good, which means that the statistic
matching is reliable. The histogram matching (HM) results shown in Figs. 3-7f are oversatu‐
rated, which may be more suitable for segmentation-based colorization (Zheng & Essock,
2008). The joint histogram matching (JHM) are illustrated in Figs. 3-7g, where the mapped
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Fig. 5. Night-vision coloring comparison (Case# AT012 – taken at dusk time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = Fig. 8(a) due to the dark RGB image in (a). Notice that the 
contrasts of all color images were increased by 10%, and the brightness of (a) and (i) were 
increased by 20% and 10%, respectively. 
 

 

 

 

Figure 5. Night-vision coloring comparison (Case# AT012 – taken at dusk time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = Fig. 8(a) due to
the dark RGB image in (a). Notice that the contrasts of all color images were increased by 10%, and the brightness of
(a) and (i) were increased by 20% and 10%, respectively.
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images are better than the color fusions but preserve much reddish colors (existed in source
images). The “stat-match then joint-HM” (SM-JHM) means that a joint-HM is performed with
inputs of (source = the SM-colored image in Fig. 3e; target = the RGB image in Fig. 3a). The SM-
JHM results are presented in Figs. 3-7h, which sometimes are better than the results from either
stat-match or joint-HM (e.g., Fig. 3h). The examples of LUT-mapping colorization are given in
Figs. 3-7i. Figs. 3-4i and Fig. 7i (an ideal case of LUT mapping) shows impressive colors;
whereas Figs. 5-6i exhibit noisy and distorted since the reference images (shown in Figs. 8a-b)
are misaligned with the NV images (shown in Figs. 5-6). When using the LUT established in
a different case at daytime (aiming at different direction at nighttime), the more misalignment
the worse the LUT-colored results appear. The LUT-based colorization described in Subsection
2.6 is perhaps suitable for a surveillance application where a camera is aiming at a fixed
direction.
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Fig. 6. Night-vision coloring comparison (Case# ST029 – taken at dusk time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = Fig. 8(b) due to the dark RGB image in (a). Notice that the 
contrasts of (d-i) were increased by 10%, and (a) was increased by 20%. The brightness of 
(a) and (i) were increased by 20% and 10%, respectively. 
 

 

 

 

 

Figure 6. Night-vision coloring comparison (Case# ST029 – taken at dusk time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = Fig. 8(b) due to
the dark RGB image in (a). Notice that the contrasts of (d-i) were increased by 10%, and (a) was increased by 20%. The
brightness of (a) and (i) were increased by 20% and 10%, respectively.
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Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
 

   
           (a)                             (b)  
Fig. 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 
pixels): (a) from Case# AT002 (target of Fig. 5, AT012); (b) from Case#  ST014 (target of 
Fig. 6, ST029). Notice that their contrasts were increased by 10%. 

Figure 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 pixels): (a) from Case#
AT002 (target of Fig. 5, AT012); (b) from Case# ST014 (target of Fig. 6, ST029). Notice that their contrasts were in‐
creased by 10%.
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Fig. 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 
pixels): (a-c) Color RGB, NIR, and LWIR images, respectively; (d-f) The colorized images 
using channel-based color fusion of (NIR LWIR), statistic-matching, and histogram-
matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-
HM, and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are 
source = (d) and target = (a). 
 

   
           (a)                             (b)  
Fig. 8. Color RGB images for night-vision colorization (taken before sunset time; 640×480 
pixels): (a) from Case# AT002 (target of Fig. 5, AT012); (b) from Case#  ST014 (target of 
Fig. 6, ST029). Notice that their contrasts were increased by 10%. 

Figure 7. Night-vision coloring comparison (Case# ST102 – taken at noon time; 640×480 pixels): (a-c) Color RGB, NIR,
and LWIR images, respectively; (d-f) The colorized images using channel-based color fusion of (NIR⊕ LWIR), statistic-
matching, and histogram-matching, respectively; (g-i) The colorized images using joint-HM, stat-match then joint-HM,
and LUT-mapping, respectively. The settings in the color-mappings of (e-i) are source = (d) and target = (a).
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Visual inspections of colorized images can generally tell which one is better or the best when
there are big enough differences between several versions of colorized images. For example,
casual inspections may easily confirm that, top 3 methods are SM, SM-JHM, and LUT; HM
and JHM are poor; and CBCF is medium. However, the subjective evalutions become more
and more difficult with a larger number of color images and also hard with small or diverse
differences. In other words, it is hard for subjective evalutions to give an exact order of six
colroziation methods. Let us examine the objective evaluations.

The objective evaluations using the OEI metric defined in Eq. (14) (refer to Section 4) are
presented in Table 1 (corresponding to Figs. 3-7 respectively), where the orders of metric
values (1 for the smallest OEI) are given within round parentheses. Keep in mind that, the
larger the OEI value of a colorized image is, the better quality (i.e., the higher order number)
the  colorized  image  has.  According  to  the  OEI  values  in  Table  1,  the  quality  order  of
colorized images varies with figures (cases).  To have an overall  impression, the sums of
the order numbers in five cases (i.e., Figs. 3-7) are calculated and shown at the rightmost
column in Table 1. The quality order of each colorization method (6 for the best) is given
within the curly brackets. The order of colorization methods from the best to the worst: SM
(stat-match), SM-JHM (stat-match then joint-HM), LUT, CBCF (channel-based color fusion),
HM  (histogram  matching),  JHM  (joint-HM).  This  order  sorted  by  OEI  values  is  quite
consistent with the order of subjective evaluations.

Method (Plot)
Fig. 3

(AT008)

Fig. 4

(AT009)

Fig. 5

(AT012)

Fig. 6

(ST029)

Fig. 7

(ST102)

Sum

{Order}

CBCF (d) 0.4753 (3) 0.5497 (3) 0.5178 (2) 0.5132 (4) 0.5872 (3) 15 {3}

SM (e) 0.5470 (6) 0.6022 (5) 0.6058 (6) 0.5529 (5) 0.6337 (6) 28 {6}

HM (f) 0.4519 (2) 0.4890 (1) 0.3587 (1) 0.5099 (3) 0.5736 (2) 9 {2}

JHM (g) 0.4372 (1) 0.5250 (2) 0.5189 (3) 0.4674 (1) 0.5503 (1) 8 {1}

SM-JHM (h) 0.5428 (5) 0.5954 (4) 0.5978 (5) 0.5678 (6) 0.6154 (4) 24 {5}

LUT (i) 0.5148 (4) 0.6025 (6) 0.5238 (4) 0.4882 (2) 0.6322 (5) 21 {4}

Table 1. The OEI (Order) values of six color-mapping methods over five cases shown in Figs. 3-7 (The Sum & {Order} at
last colmun is calculated with the orders of five cases).

The subjective evaluations of night vision coloration are based on casual visual inspections.
More qualitative measurements, subjective evaluations (by a group of subjects), and statistical
analysis will be introduced in the future. The quantitative (objective) evaluations using the
objective quality index (OEI) require a reference (daylight) image. Thus we will continuously
improve the OEI metric by relaxing the requirement of a reference image. We will further
conduct more comprehensive comparisons.
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6. Conclusions

In this chapter, we review six night-vision colorization techniques, a channel-based color
fusion (CBCF) procedure; statistic matching (SM), histogram matching (HM), joint histogram
matching (JHM), and stat-match then joint-HM (SM-JHM) method, and LUT-based ap‐
proaches. An objective evaluation metric for NV colorization, objective evaluation index (OEI),
is introduced. The experimental results with five case analyses showed the order of coloriza‐
tion methods from the best to the worst: SM, SM-JHM, LUT, CBCF, HM, JHM. The order of
objective evaluations comply with the order of subjective evaluations.

The accurate objective metric such as OEI will help develop, select, and/or tune up a better NV
colorization technique. The ideally colorized NV imagery can significantly enhance the night
vision targeting by human users and will eventually lead to improved performance of remote
sensing, nighttime perception, and situational awareness.
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