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Abstract. In this paper, we present a P300 model for control of Cerebot – a 
mind-controlled humanoid robot, including a procedure of acquiring P300 sig-
nals, topographical distribution analysis of P300 signals, and a classification 
approach to identifying subjects’ mental activities regarding robot-walking  
behavior.  

We design two groups of image contexts to visually stimulate subjects when 
acquiring neural signals that are used to control a simulated or real NAO robot. 
Our study shows that the group of contexts using images of robot behavior de-
livers better performance.  
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1 Introduction 

P300 is a late, endogenous component of event-related potentials (ERPs), which ap-
pears as a large positive deflection after the events (such as sensory, cognitive events) 
being presented about 300ms [1]. The latency of it varies from 200 to 800ms, and its 
amplitude can even reach 20uV in parietal area of the cortex. This potential can be 
regarded as a degree index of the relevance between stimulus and subject’s cognitive 
task [2]. This classical P300 Speller based on “oddball” paradigm first set up in [3] 
provides a communication channel to identify subjects’ mental activities by analyzing 
P300 signals. Since then, applications of P300 potentials have emerged, e.g., a P300 
Speller for communication [4], an internet browser [5], controlling a mouse on the 
screen [6] or controlling an object in a virtual environment [7]. Significant attempts to 
control physical devices are reported, e.g., to navigate a wheelchair [8], and even to 
control a 7 degree of freedoms (DoFs) robotic [9]. Work in [10] uses P300 evoked 
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potentials to control a humanoid robot. These applications become more and more 
interesting to disabled patients to help themselves in their daily life.  

In this paper, we use Cerebot, a mind-controlled humanoid robot platform [11], to 
investigate a P300 protocol for control of a NAO robot, as shown in Fig. 1. We devel-
op an OpenViBE-based experimental environment, which integrates programming, 
BCI design and signal acquisition software. We design two groups of different image 
contexts to visually stimulate subjects for acquiring P300 signals. Our studies show 
that the group with context of robot achieves a better performance. 

2 Cerebot and OpenViBE Environment 

Cerebot is a mind-controlled humanoid robot platform [11-12], consisting of a Cere-
busTM Data Acquisition System, a humanoid robot, and a virtual simulator WEBOTS, 
as shown in Fig. 1. The Cerebot platform uses CerebusTM to record brainwaves during 
human mental activities. This platform uses a NAO robot with 25 DoFs shown in  
Fig. 1 or a KT-X PC humanoid robot with 20 DoFs shown in Fig. 2.  

OpenViBE is new general-purpose software for designing, testing, and using brain-
computer interface. Using OpenViBE, it is easy and fast to design a brain-computer 
interface in an intuitive way. Fig. 1 describes the OpenViBE programming environ-
ment for the Cerebot platform. The environment integrates the visual stimulus section, 
collecting signal section, signal processing and classification section, and robot  
control section. 

 

Fig. 1. Cerebot, a mind-controlled humanoid robot platform 

3 Experiment Preparation and Procedure 

3.1 Experimental Protocol  

The experiment design is based on the classical “oddball” paradigm. A visualization 
box in OpenViBE displays a 2*3 matrix with contexts on the screen. Two groups of 
image contexts are embedded into the matrix to visually stimulate test subjects.  
The first group contains six red squares provided by an OpenViBE box; while the 
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The subject sits in a comfortable chair. The distance from the subject to the display 
screen is 70cm and subject’s eyes are at the same horizontal level with the screen 
center. The subject tries to avoid any movement during acquiring P300 signals. A 
complete experiment is conducted in a silent environment. As discussed before, each 
subject needs to take two groups of experiments: The first one called Set One is that 
the stimulus section is flashing the red squares, and the second one called Set Two is 
that the stimulus section is flashing robot images with arrows indicating robot motion. 

4 Signal Analyses 

4.1 Certification of P300 Signal  

The acquired neural signals is amplified, preprocessed by an analog lowpass filter of 
50Hz, and digitalized with a sampling frequency of 1000Hz. The signal analysis sec-
tion processes the neural signals by extracting the frequency components between 0.5 
and 26Hz using a digital bandpass filter and removing an extracted epoch with its 
amplitude higher than 90uV. In order to find out the amplitude differences in epochs 
under target and non-target stimulus conditions, the signal analysis section subtracts a 
baseline from each epoch. The baseline is the average of the signal pre-stimulus 
300ms.  

The solid and dotted curves plotted in Fig. 3(a) represent the averaged signals un-
der target and non-target stimulus conditions from the channel Pz. It demonstrates that 
the experiment design elicits P300 potentials because the amplitudes elicited under 
the target condition are much larger than these under the non-target condition at about 
340ms. The signed r2 function is an index to describe the discrimination between the 
signals acquired under two different conditions. Fig. 3(b) shows the r2 values’ topo-
graphy distribution over all channels. The color bar on the right shows the r2 value 
range. Dark red represents highest r2 value. The r2 values around the channels Pz and 
Cpz are the highest and become lower when other channels’ distances increase from 
the channel Pz, as shown in Fig. 3(b), so it is assured that the target stimulus causes 
biggest change in the parietal and occipital area. It is also important to investigate the 
amplitudes of neural signals after each visual stimulus. The color bars in the second 
row represent the value of amplitude, and the n axis is the index of stimulus. Fig. 3(c) 
and Fig. 3(d) show the amplitude of signals from pre-stimulus 300ms to pos-stimulus 
800ms at the channel Pz (each stimulus flashes at 0ms). For example, a color spot (t, 
n) in Fig. 3(c) represents a value of the signal elicited by nth target stimulus after it 
flashing tms. Some red spots in Fig. 3(c) mainly appear between 200 and 400ms, 
which indicate there are positive deflections during this time period after target stimu-
lus flashings. The neural signals under the target condition exhibit the features with 
their peaks at about 340ms as show in Fig. 3(c), so this experiment elicits P300 poten-
tials; while the neural signals under the non-target condition look unexciting, as 
shown in Fig. 3(d), because the color points appear randomly after stimulus flashings 
and the signals amplitudes are relative low. 
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   (a)                               (b) 

  
    (c) (d) 

Fig. 3. (a) Averaged brain signals at the channel Pz under target/non-target conditions (n=40) 
(b) The r2 value distribution (c) Neural signals elicited under target stimuli (d) Neural signals 
acquired under non-target stimulus 

4.2 Effects of Images Context 

The P300 potential is evoked by the visual event, so the interface presented to sub-
jects, the format of stimulus and ISI all may have effects on the latency and amplitude 
of P300 potentials [15]. We design two groups of image contexts described in subsec-
tion 3.2 to investigate effects of image contexts on P300 evoked potentials.  

We discuss the averaged neural signals acquired from the channel Pz. The red and 
blue curves in Fig. 4 represent the acquired neural signals in Set One and Set Two, 
respectively. The results show that the P300 evoked potentials change in shape when 
the image contexts change. Compared to Set One, the averaged neural signal acquired 
from Set Two is smoother and has a deeper negative peak before the P300 potential 
peak. After this negative peak, a neural signal acquired from Set Two has only one 
peak; the one acquired from Set One has two relative lower peaks. The differences 
may lie in different visual intensities of the two groups of image contexts as a P300 
potential is related with the stimulus characteristic [13]. The differences may also be 
probably caused by some other mental or cognitive factors. The important result  
for us is that the classification success rates of Set Two are higher than these of  
Set One. 
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Fig. 4. Averaged P300 potentials elicited by different image contexts (n=800) 

5 Robot Control Test 

This section describes an evaluation of the P300 model by control of a simulated or 
real NAO robot. Each subject is asked to take both Set One and Set Two. The video 
clip on control of the NAO robot walking behavior is available on our website 
(http://www.youtube.com/watch?v=rOAosvpbRc&feature=youtu.
be or http://v.youku.com/v_show/id_XNjAzNjE3Njc2.html).  

A typical P300-based system can be divided into three parts: signal acquiring, pat-
tern recognition, and device control. A visual stimulus activates a window with a 
width of 500ms to catch a P300 potential at the selected channels (here we choose Cz 
or Pz). The signal is filtered as discussed above and down-sampled to100Hz, so the 
dimension of a feature vector is 50.The feature extraction part provides six feature 
vectors to the Fisher’s Linear Discriminant Analysis (LDA) to classify P300 signals. 
This two-class classification algorithm classifies whether a P300 potential is elicited 
under the target condition or not after a trial completed.  

Two right-handed volunteers with normal vision undergo the two sets of experi-
ments. We summarize the evaluation results in the table. The success rates of the 
P300 potentials evoked under the image contexts using the robot walking behavior are 
higher than these under the ones using the red square. This result may indicate that the 
image contexts of robot walking behavior could improve the attention, motivation or 
other cognitive ability when a subject is doing P300 experiment. 

Table 1. Accuracy of Evaluation Results 

Subject Channel Set One Set Two 
One Cz 52.08% 87.49% 
One Pz 56.25% 85.39% 
Two Cz 93.05% 97.22% 
Two Pz 94.90% 97.69% 
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6 Conclusions 

In this paper, we use Cerebot to investigate the P300 model for control of a humanoid 
robot. The analysis results on the amplitude, latency and polarity of the acquired 
neural signals which are elicited after flashing a target demonstrate that the experi-
ment protocol elicits the P300 potentials well.  

One of study conclusions is that different contexts of images cause to change the 
shape of P300 potentials. The natural images of robots are used as stimulus to elicit 
the P300 potentials, instead of characters or symbols offered by the OpenViBE devel-
opment environment, so that it makes the graphical interface more intuitive. Besides, 
a humanoid robot has a similar appearance and enables to perform basic behavior as 
people, so successful control of the humanoid robot behavior via brainwaves would 
pave the way to complete the complex task in the future which will meet the require-
ments of patients in daily life. Compared to other brainwave-based models, such as 
SSVEP or mu/beta models, the P300 model could achieve a higher success rate.  

Our future research will continue to investigate the behavior imagination-based on 
model for control of the humanoid robot that relies less on the visual stimulus [11-12]. 
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