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Abstract Real-time information fusion based on WAMI
(Wide-Area Motion Imagery), FMV (Full Motion Video),
and text data is highly desired for many mission critical emer-
gency or military applications. However, due to the huge data
rate, it is still infeasible to process streaming WAMI in a real-
time manner and achieve the goal of online, uninterrupted
target tracking. In this paper, a pseudo-real-time Dynamic
Data Driven Applications System (DDDAS) WAMI data
stream processing scheme is proposed. Taking advantage of
the temporal and spatial locality properties, a divide-and-
conquer strategy is adopted to overcome the challenge
resulting from the large amount of dynamic data. In the
Pseudo Real-time Exploitation of Sub-Area (PRESA)
framework, each WAMI frame is divided into multiple sub-
areas and specified sub-areas are assigned to the virtual ma-
chines in a container-based cloud computing architecture,
which allows dynamic resource provisioning to meet the per-
formance requirements. A prototype has been implemented
and the experimental results validate the effectiveness of our
approach.

Keywords WAMI (wide-areamotion imagery) . Dynamic
data-driven application systems . Pseudo-real-time
processing . Container-based Cloud

1 Introduction

Situational awareness (SAW) is essential for mission critical
applications. Object assessment can come from many sources
such as cyber, linguistic and surveillance data from which
information fusion exploitation techniques are needed [1, 2].
Object detection from surveillance data is often achieved
through an exploitation of sensor data such as wide area mo-
tion imagery (WAMI) systems in a layered sensor environ-
ment [3]. Real time detection is ideal since the faster targets
are detected, the faster the opportunities to assess their activ-
ities through tracking and identification [4]. However, real-
time tracking is difficult due to the complexity of the problem
space, cluttered scenes with obscurations, varying sensor res-
olutions, different environmental conditions (e.g., illumina-
tion), and the intelligence of a target. Moreover, WAMI sys-
tems typically produce tens of thousands of moving target
indicator (MTI) detections for a city-size urban area of only
40 km2 at video rates of up to 12 Hz [5, 6].

Compared with traditional video surveillance tasks, WAMI
surveillance is characterized by its large amount of dynamic
data. A typical low frame rate (1.25 Hz) WAMI sequence,
generates a data flow of over 100 MB of data per second, or
over 400GB per hour. The data scale can be even larger for
high frame rate (e.g., >10 Hz) and/or higher resolution videos
(e.g., >10 K × 10 K) [7, 8].

With such large data rates, there is a lack of real-time
methods to integrate data. The existing methods are static
updates at each incident site and therefore the response in such
systems is significantly slowed. The ability to integrate real
time data to support situational awareness (SAW) target de-
tection would be important [9]. Inherently, effective responses
for target detection rely on the level of SAWand data process-
ing, sharing, computation, and analysis [10]. WAMI video
data offers tremendous support to target detection in
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conjunction with other intelligence data but is very difficult to
process and analyze the data due to its size, dynamics, and
security requirements [11].

Several methods have been proposed to utilize the
Dynamic Data Driven Application System (DDDAS) [12,
13] for target tracking and information fusion [14, 15].
Recent examples demonstrated coordination between UAVs
and image sensing [16]. Liu et al. [17] have used the DDDAS
concept to combine modeling, measurements, and software
solutions for an information fusion method of tracking targets
using a cloud architecture [18].

Cloud Computing has been recognized as an ideal candi-
date that can meet the next-generation large data contextual
challenges. However, the current mainstream hypervisor-
based Cloud architecture cannot satisfy the requirements of a
granular architecture that allows new mission critical applica-
tions to be deployed using drastically less computing re-
sources, reducing data management burdens, and maintaining
high levels of security. A new solution is needed that dynam-
ically adapts to the changing environment while minimizing
the overhead at the service providers’ side.

The Cloud Computing us ing container-based
virtualization technique does not depend on hypervisor.
Instead, the operating system is modified to securely isolate
multiple instances of an operating system within a single host
machine. The guest operating system instances are often
called virtual private servers (VPS), containers, or virtual ma-
chines (VMs). Since neither a hypervisor nor privilege instruc-
tion trapping/ translation is needed, near-native performance is
achieved [19]. Another important feature is that all VMs share
a single kernel, which allows for great flexibility through live
resource reallocation and ultra-low overhead. Therefore, we
adopt a container-based architecture for WAMI processing.

In this paper, we propose a pseudo-real-time WAMI data
stream analysis scheme. Taking advantage of the temporal and
spatial locality properties, a divide-and-conquer strategy is
used to overcome the challenges resulting from the large
amount of dynamic data. The WAMI frame is divided into
multiple sub-areas, each of which is assigned to a container-
based VM. The sub-areas are processed independently of one
another and the results are displayed in real-time to an opera-
tor. When the operator identifies certain suspicious objects in a
sub-area, the resources of the container assigned to it are dy-
namically allocated to match the performance requirement.
Then, the main processing engine keeps fetching new frames,
dividing them, and assigning sub-areas to the containers for
feature abstracting and target tracking. In this manner, we can
process certain Bkey^ areas in real-time even though we still
cannot process the entire frame in real-time.

The rest of this paper is organized as follows. Section 2
provides a brief survey on the related work in WAMI process-
ing. Section 3 introduces the rationale of the proposed pseudo-
real-time processing approach, and Section 4 presents a system

level description of the framework. Section 5 reports the exper-
imental results in detail. Section 6 discusses the design tradeoffs
and critical considerations. Section 7 provides conclusions.

2 Related Work

The research in WAMI processing usually focuses on: (1)
developing data-driven models to characterize the dynamic
objects in the scene, for an excellent overview, see Porter
et al. [6]; and (2) improving visual target tracking performance
using background registration to compensate the camera mo-
tion. Registration can significantly improve the quality of
tracking algorithms [20, 21]. However, the registration pro-
cess requires tremendous computing resources, causing the
entire tracking application to only achieve a frame rate of less
than one frame per second on a commodity computer. This is
obviously unsuitable for real time tracking applications.

Another issue is the large data files for which researchers
have developed methods in WAMI compression [22–24].
WAMI processing requires data management [25, 26]. One
example is a low-frame evaluation of WAMI tracking and
performance assessment as shown by Ling et al. [27].
Numerous methods have been applied to WAMI such as
Sparse Representation [28], kernel learning [29], likelihood
of features [30], Histogram Based Descriptors [31] to track
many targets [32]. K. Liu et al. [33, 34] proposed using optical
flow combined with principal component analysis for motion
detection. These tracking methods support activity recogni-
tion [35], context assessment [36], and enhanced situation
awareness [37].

Context is an important element of WAMI analysis includ-
ing spatial [38] and temporal context [39]. Context provides
an assessment of the vehicle directions [40] and support pat-
tern of life analysis [41]. The goal is to maintain Maximum
Consistency Context, a spatio-temporal context that is robust
to noises in target neighbourhood [42]. Recent efforts have
developed methods for testing [43] and real-world assessment
[44]. From all of these works, registration, stream processing,
and context-based tracking rely on the ability to robustly reg-
ister the WAMI data in real-time.

The Scale Invariant Feature Transform (SIFT) developed
by David Lowe [45] is able to extract invariant features to be
used by reliable and robust matching between views of a tar-
get or scene. The matching is so robust that it can endure
distortion such as scaling, rotation and change of illumination.
Using SIFT and Random Sample Consensus (RANSAC) [46]
for registration between consecutive frames before applying
tracking algorithms, the quality of tracking algorithms can be
significantly improved [27].

Although the quality of tracking algorithm can be enhanced
by registration, the processing frame rate is very low. Our
previous effort of improving the processing speed for target
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tracking [19, 47] utilized container based virtualization to
achieve flexible and scalable resource allocation in large scale
mission system, which laid a foundation for work reported in
this paper. In [19], we focused on serving multiple users using
the lightweight virtualization technology of container. The
work reported in [47] has improved the performance of a
full-motion video (FMV) tracking application by distributing
frames to multiple containers. One of the main contributions if
this paper is the novel method of dividing frames into subareas
and accelerated areas of interests.

3 Rationale of Pseudo-Real-Time Processing

WAMI surveillance systems can monitor expansive and
densely populated areas for targets. Modern imaging sensors
produce high resolution frames that can capture important
details scattered over a large area. Frames are typically passed
through a feature detector, which identifies targets that can be
tracked in subsequent frames. As established in the previous
section, accurate feature detection is fairly computationally
expensive on current computer hardware. The high resolution
that defines WAMI surveillance prohibits feature detection for
all but extremely low frame rate streams.

Real-time stream processing requires that the output frame
rate be equal to the stream frame rate. The system must be
capable of processing an entire frame before the next frame
arrives. While this goal is fully realizable for low resolution
streams, attempting to process WAMI streams in real-time
consumes more computing resources than available in com-
modity systems.

It is possible to achieve real-time processing of WAMI
surveillance by altering the data stream. In onemethod, frames
can be discarded to allow the image processing system time to
keep up with incoming frames. However, this may severely
impact the usefulness of detected features since targets would
be able to cover larger distances between subsequent frames.
With sufficient knowledge of the capabilities of the processing
system, targets could subvert tracking efforts and pose unde-
tected threats to the area.

Alternatively, the frame resolution can be reduced to facil-
itate real-time processing. While this method does not suffer
from the tracking problem introduced by frame discarding, it
arguably demotes the data stream out of WAMI classification.
Capturing small details in the frame, a key benefit of WAMI
surveillance, is sacrificed to achieve real-time processing since
features may pass undetected or be rendered completely un-
recognizable in the low resolution frames.

In addition, both methods suffer a common weakness: de-
pendency on the capabilities of the computing hardware.
Sufficiently reducing the stream quality requires intimate
knowledge of both the feature detector and the hardware. If
either the processing (discarding frames) or hardware

(resolution) is altered, then the stream quality must be
reconfigured for the new system. This system lacks versatility
and is difficult to upgrade.

We propose a Pseudo Real-time Exploitation of Sub-Area
(PRESA) framework for processingWAMI frames that avoids
these pitfalls. Rather than attempt to process the full frame in
real-time, our framework instead aims to process a sub-area of
the frame in real-time. When an area of interest is identified in
the frame, the computing resources are reallocated to acceler-
ate the processing rate of that sub-area to real-time. The re-
source allocation preserves the detail afforded by WAMI sur-
veillance and meets the time resolution requirement for accu-
rate target tracking within the sub-area. Once the target density
in the sub-area returns to normal distribution, the framework
redistributes resources across the full frame. The framework
takes a dynamic approach to resource allocation to apply com-
puting power to where it is needed in the frame. In this man-
ner, the content of the WAMI stream dictates how the hard-
ware is utilized.

The PRESA framework is built upon container-based
Cloud Computing platform to achieve the necessary flexibili-
ty. The full WAMI frame is divided into a grid of uniformly-
sized sub-areas. Each sub-area is assigned to a container for
processing. When a sub-area is marked for acceleration to
real-time processing, its associated container is allocated a
larger share of the computing resources. Even without accel-
eration, the PRESA framework spatially parallelizes frame
processing which may improve feature detector performance,
especially for detectors that do not natively support
multithreading. Containerization provides a level of abstrac-
tion from the hardware that allows the framework to operate
independently of the physical computer configuration.
Containers can be distributed across multiple nodes in a com-
puting cluster and can migrate between nodes to handle dy-
namic workloads.

4 Pseudo-Real-Time Processing Framework

The PRESA framework is divided into three distinct groups:
clients, workers, and resource managers. Clients provide user
interfaces to the framework and are designed to run on per-
sonal computers. Workers perform feature detection on sub-
areas of frames according to client requests and execute ex-
clusively within containers. A single resource manager runs
on each computing node to allocate resources to containers
and receive requests to accelerate containers. Each element of
the framework communicates information with the others via
Transmission Control Protocol (TCP) socket connections.
Figure 1 depicts the high level structure of the PRESA frame-
work for a single client, worker, and resource manager.

When a user wants to process aWAMI stream in the frame-
work, the user opens a client and enters the processing
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parameters. The user specifies the grid dimensions for divid-
ing the frame and the collection of workers that will be used to
process the stream. Once configured, the client assigns a sub-
area to each worker and opens a display window for the user.
The client starts a thread for each worker to issue job requests
and receive detected features. A job request indicates a frame
and sub-area for the worker to process.

Workers wait to receive job information from clients over
the network. Upon receiving a job request, the worker loads
the frame indicated by the request and applies the feature
detector to the sub-area. The worker then sends the resulting
detected features back to the client according to the network
information included in the request. It also calculates the av-
erage frame rate from the time interval elapsed while process-
ing the frame and reports this to the resource manager respon-
sible for the computing node.

Once the client receives detected features from a worker, it
updates the corresponding sub-area in the user display. The
client then prepares the next request for the worker. Since
accelerated sub-areas progress through the stream faster than
non-accelerated sub-areas, some degree of synchronization is
necessary to keep slower sub-areas from lagging behind. If a
sub-area is the furthest along in the data stream, then it updates
the counter shared by all client threads with its current frame
number. If a sub-area is several frames behind the furthest sub-
area, then it skips frames to match it. The allowable frame lag
is called the frame synchronization tolerance. Unless other-
wise noted, a tolerance of zero frame is used to enforce strict
synchronization between sub-areas. The synchronization al-
gorithm is shown in Fig. 2.

Additionally, the client is capable of issuing commands to the
resource manager to accelerate sub-area processing. When the
user clicks on the sub-area of the frame, the client sends a com-
mand to the resource manager to allocate more computing re-
sources to the worker assigned to the sub-area. If the sub-area is

already accelerated, then the client instead sends a command to
restore the default resource allocation.

The resource manager allocates computing resources to
the containers on its node. The resource manager receives
both frame rate reports and acceleration commands from
workers and clients, respectively. Frame rate reports provide
feedback for the proportional controller that determines the
computing resources distribution between accelerated con-
tainers. A simple indicator can be the processing frame rate
of each individual container. Acceleration commands set the
target frame rate for faster processing containers. The resource
manager only updates the resource distribution when a report
or command is received which reduces the impact on node
performance when waiting for a message type.

Once the last frame of the WAMI stream is processed, the
client issues commands to each of the resource managers to
restore the default resource allocation to all containers. This
releases the workers for other clients to use.

5 Experimental Validation

5.1 Experimental Setup

Our experiments were conducted on a container-based cloud
computing platform at Binghamton University. The platform
was comprised of four identical computing nodes. Each node
had a Xeon E5–2509 quad core CPU at 2.4GHz, 16GB mem-
ory and 3 TB storage. The nodes were installed with CentOS
release 6.4. The kernel was patched with OpenVZ [48] 2.6.32-
042stab085.17. The containers ran Ubuntu 14.04.1 LTS and
were installed with OpenCV 2.4.8, which provided the SIFT
feature detector and client display interface, and Boost 1.54.0,
which provided multithreading support.

We tested the framework using the SIFT feature detector
withWAMI data stream composed of 171 frames from AFRL
CLIF 2006 dataset [49]. The data stream captures a large area
from an aerial viewpoint and represents the typical stream
processed by the framework. Each frame is a 2672 by 1200
pixel grayscale image stored in JPEG format. Figure 3(a) is an
example WAMI aerial picture and Fig. 3(b) shows the SIFT
detector key-points on the picture. Figure 3(c) shows an out-
put frame from the client program with accelerated sub-areas
highlighted in red. The user display was disabled when
collecting frame rate data since refreshing the display in
OpenCV constrained the output frame rate to a maximum of
4 frames per second (FPS). The framework was capable of
processing the WAMI stream at higher frame rates than that,
especially when employing container acceleration. Similarly,
we assumed that a copy of the data stream is stored locally in
each container to isolate the effect of the framework on com-
puting resource utilization. Determining the optimal method

Figure 1 Pseudo-real-time processing framework.
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for displaying and moving WAMI data streams across a net-
work is beyond the scope of this study.

5.2 Case 1: Single Node Experimental Results

We first tested the PRESA framework with a naïve case in
which a single worker processes the WAMI stream. This pro-
vides a baseline for comparing the effects of frame division
and redistributing resources. The client loaded the data stream
and assigned the worker to apply the SIFT feature detector to
the full frame. The resource manager on the node collected

reports from the worker, but the resource allocation was not
changed for the duration of the test.

The worker’s output frame rate was sampled at 100 milli-
second intervals. The samples were passed through averaging
filter with a window of 1.5 s to smooth out small differences
between adjacent samples. The frame rate samples for a single
pass through the data stream are plotted against time in Fig. 4.
The single worker configuration required more than 300 s
(5 min) to process the data stream in full frames. The worker
maintained a steady output of approximately 0.5 FPS for the
duration of the test.

Next, we tested the effect of distributing processing work
across multiple containers on a single node. As described in
Section 3, the framework is capable of dividing frames into
sub-areas for processing by different containers. Spatially di-
viding frames parallelizes the computationally intensive fea-
ture detection operation. The client divided the full frame
along a grid into a number of sub-areas, each of which was
assigned to a container for processing. Since all containers
were located on a single node for this test, only a single re-
source manager was needed to collect reports. The resource
manager did not redistribute resources for the test duration.

In this manner, the framework was tested for varying de-
grees of frame division. In the most extreme case, the full frame
was divided into an 8 by 8 grid, distributing processing work

(b) SIFT Detector Key-Pooints on WAMI Picture.  

(c) Spatial Frame Division on WAMI Picture. 

(a) A WAMI Aerial Picture.  

Figure 3 WAMI aerial picture sample.

Figure 2 Frame synchronization
algorithm.

Figure 4 Full frame processing on a single container.
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across 64 containers on a single node. For each trial, theWAMI
stream was processed by the framework and the total elapsed
time was recorded. The average worker output frame rate was
calculated by dividing the elapsed time by the number of
frames in the data stream. The average frame rates are plotted
against the number of containers in Fig. 5. The average frame
rate increased linearly at a rate of approximately 0.5 FPS per
container. This trend continues until eight or more containers
were used to process frames. The frame rate continued to in-
crease to a maximum of 5 FPS for 16 containers. After this
turning point, the average frame rate decreased at a steady rate.

We then tested the framework’s ability to accelerate feature
detection in sub-areas of the frame. After dividing frames into
sub-areas, the client issued a command to the resource man-
ager to accelerate feature detection in a sub-area. The resource
manager then allocated additional computing resources to the
container responsible for the sub-area.

In this test, the client divided the frame into 16 sub-areas,
each of which was assigned to a different container. As in the
previous setups, all containers ran on the same node so only a
single resource manager was required. The client issued an
acceleration command for four sub-areas at the 15-s mark. In
response, the resource manager allocated more computing re-
sources to the corresponding containers. At the 30-s mark, the
client issued a deceleration command for each of the acceler-
ated sub-areas. The resource manager restored the default re-
source allocation to the containers for the remainder of the
test. The output frame rate for each worker was recorded at
100 millisecond intervals and passed through an averaging
filter with a 1.5 s window. The average frame rate is plotted
at each instance of time for accelerated and non-accelerated
sub-areas in Fig. 6.

Before any sub-areas were accelerated, the average output
frame rate was approximately 4 FPS. Once the acceleration
commands were issued at the 15-s mark, the frame rates of the

two types of sub-frames clearly diverged. The average frame
rate of the accelerated sub-area increased rapidly to above 6
FPS. By comparison, the average frame rate of the non-
accelerated sub-area decreased to approximately 3.5 FPS.
This is because more resources are allocated to the accelerated
sub-areas than the non-accelerated ones given the same total
amount of CPU cycles. Deceleration commands were issued
at the 30-s mark, when the frame rates for both sub-areas
quickly go back to the same level as before the acceleration
command has been issued.

5.3 Case 2: Multi-Node Experimental Results

The PRESA framework is capable of coordinating work be-
tween containers across multiple hardware nodes. We tested
this capability on a cluster of four identical computing nodes.
Each computing node had a resource manager, but the con-
tainer resources were not altered for the duration of the test. A
single client assigned sub-frames to nodes in a simple round-
robin scheduling pattern to evenly distribute processing work
between available nodes. Each node had a number of con-
tainers already running that the client can request for process-
ing sub-frames of the WAMI stream.

The test was conducted with two, three and four nodes
available to the framework. The number of containers in-
volved in each setup varies from one up to 64 containers.
The frame rates are plotted against the number of containers
for each setup in Fig. 7. The results for the single node setup
are included for comparison.

The framework performance can be divided in two distinct
sections: a region of linear increase in frame rate per additional
container followed by a region of diminishing slope for great-
er numbers of containers. The linear region was observed in
the single node results earlier, but the trend was even clearer
with the additional data from the multi-node setups. TheFigure 5 Single node average frame rates.

Figure 6 Accelerated versus non-accelerated containers.
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average frame rate increased at approximately 0.5 FPS per
additional container in the setup. This relationship was held
in each of the configurations. Increasing the number of nodes
in the framework extended the width of the linear region by
approximately 8 containers per additional node.

In the second region the frame rate rose nonlinearly as the
number of containers was increased. The rate at which the
frame rate rose starts to diminish asmore containers were added
to the framework. This diminishing effect was less pronounced
as the number of nodes increases, resulting in a gradual slope
change for the 4 node setup. Only the single and 2 node setups
had frame rates that clearly decreased when the number of
containers was set significantly beyond the linear region.

We investigated the mechanism by which the PRESA
framework continued to achieve higher frame rates in the sec-
ond region. Viewing the user display from the client program
verified that the framework produces a continuous stream of
output frames. However, some sub-areas visibly slowed down
relative to other sub-areas due to uneven CPU scheduling to
containers. This meant that the frame synchronization mech-
anism, which is described in Section 4, was skipping frames in
slower sub-areas to keep them apace with the rest of the frame.
Even though frame synchronization is necessary to produce a
useful output frame, excessive skipping reduces the total com-
puting work for the stream. This effect accounts for the ob-
served increase in frame rate while the actual amount of work
done remains unchanged.

We quantified the magnitude of frame synchronization by
determining the fraction of the stream that is actually proc-
essed. The synchronization was calculated from the number of
sub-areas skipped for a pass through the WAMI stream. The
results are plotted for each of the node setups in Fig. 8. Almost
every frame of the stream was fully processed when only a
few containers were used, implying that containers received
equal and frequent access to computing resources. Increasing

the number of containers decreased the fraction of the stream
processed since more frame skipping occurred. However, the
precise relationship between the two quantities differed de-
pending on the number of nodes.

5.4 Effective Frame Rate (EFR)

We propose a parameter called effective frame rate (EFR) that
takes the fraction of the stream processed in account. This
parameter considers the recorded average frame rate as shown
in Fig. 7 along with the fraction of the stream processed as
shown in Fig. 8. Specifically, the EFR is defined as the prod-
uct of the two quantities.

EFR ¼ Frame Rate� Fraction Processed

We tested the EFR parameter with variant frame synchro-
nization tolerances. The framework was given a single node
with 16 containers. TheWAMI streamwas processed with the
frame synchronization tolerance ranging from the default zero
frame up to 15 frames. The recorded average frame rate and
computed EFR are plotted against the tolerance in Fig. 9. The
recorded frame rate decreased as the frame synchronization
tolerance increased because the frequency at which the syn-
chronization mechanism was triggered decreased. However,
the EFR remained at a nearly constant 3.5 FPS. In fact, the
recorded average frame rate approached the EFR for greater
frame tolerances. Results confirmed that the EFR is invariant
to the synchronization mechanism and thus is more appropri-
ate for comparing the framework performance to other
methods for utilizing multiple computing nodes.

Figure 10 shows the EFR computed from the results in
Fig. 7. The linear region was mostly unchanged since the
fraction of stream processed is fairly close to 1 as shown in
Fig. 8. The nonlinear region was much less gradual and flat-
tens out almost immediately. In fact, the EFR decreased

Figure 8 Average fraction of stream processed.Figure 7 Average frame rate for multiple nodes.
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slightly as the number of containers was significantly in-
creased as expected. Unlike the average frame rate, EFR pro-
vides a clear distinction between the two regions at which the
maximum EFR occurs. Increasing the number of nodes in-
creased the number of containers required to reach the maxi-
mum EFR by nearly a constant amount.

The results for multiple nodes are summarized in Table 1.
Themaximum average frame rate and EFR are shown for each
of the multiple node setups.

6 Discussions

The Pseudo Real-time Exploitation of Sub-Area
(PRESA) framework possesses several advantages over
applying the feature detector to each full frame. Next,

we discuss the major advantages of our PRESA scheme
and analyze the impact on the feature detection quality.
An experimental study shows that PRESA outperforms
the Hadoop-based solution.

6.1 Major Advantages

Frame division provides significance performance gains
for feature detection. The EFR for the single node setup
reached a maximum 3.8 FPS when eight containers
were assigned to the framework. The number of sub-
areas matches the maximum number of concurrently
running threads on the node. This can be generalized
to imply that the optimal number of containers for uti-
lizing computing resources is equal to the number of
concurrent execution threads supported by the hardware.
Subdividing a task between multiple containers is akin
to parallelizing work via multithreading. However, con-
tainers have the added benefit of enabling processing
collaboration and migration between hardware nodes.

Sub-area acceleration allows the framework to
achieve even higher average frame rates than frame
division alone. For tests involving 16 sub-areas, accel-
erated sub-areas were capable of maintaining a steady
output frame rate over 6 FPS, which was significantly
higher than the average frame rate of 4 FPS without
redistributing resources. The results indicate that the
higher accelerated frame rates were possible because
computing resources were taken away from non-
accelerated sub-areas, which produced lower frame rates
than normal. The framework allows for efficient utiliza-
tion of limited computing resources by applying more
processing time to high-interest areas.

The PRESA framework is effective when extended to
span multi-node setups. The maximum EFR increased
by almost a factor of 2 with the first additional node.
The rate of increase diminished slowly as more nodes
are added to the framework. This demonstrates that the
framework utilizes almost the full processing capabilities
of the hardware nodes, but the increased overhead from
inter-node network delay becomes appreciable with
more nodes. The EFR reached a well-defined peak be-
tween the linear region of increase and subsequent re-
gion of decrease. For the tested computing cluster, the

Figure 9 Effective frame rate (EFR) versus synchronization.

Figure 10 Effective frame rates for multiple nodes.

Table 1 Multi-node results summary.

Nodes Average frame rate (fps) Effective frame rate (fps)

1 5.05 3.74

2 9.71 6.70

3 14.20 9.06

4 17.03 11.35
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single node reached the peak EFR with 10 containers.
Each additional node increased the necessary number of
containers by another 10 containers.

Using the PRESA framework, the peak framework perfor-
mance can be achieved for a computing cluster of arbitrary
size by experimentally determining the number of containers
needed to maximize the EFR for a single node and multiply-
ing that quantity by the total number of nodes in the cluster.
Additional tests on different hardware setups are needed to
verify this hypothesis.

Increasing the number of sub-areas beyond the degree
of concurrency allowed by the processor generally re-
sulted in a gradual reduction in EFR. This implies that
the number of containers can be larger than the optimal
point without incurring significant overhead. The excep-
tion to this trend is the 4 node setup for which the EFR
decreased more rapidly after the turning point; further
investigation with more nodes may indicate which of
the two trends dominates.

6.2 Feature Detection Quality

An aspect of the framework that must be considered is
the effect it has on feature detection quality. The per-
formance gains provided by the framework are only
useful if the detected features are usable for tracking
targets. To assess feature quality for tracking, we com-
pared the accuracy of detected features between the
framework and the standalone feature detector.

We generated a list of baseline features by applying
the SIFT feature detector to a frame. The same frame
was divided into varying numbers of sub-areas before
applying the SIFT feature detector. The resulting fea-
tures were compared with the baseline features to rate
the accuracy on a scale from 0 (no matching features)
and 1 (identical features). Features were considered to
match if their coordinates were equivalent when round-
ed to the nearest whole pixel. Features that did not
match, either missed features not detected by the frame-
work or false features not in the reference list, were
counted as errors. The accuracy was computed by tak-
ing the difference between number of baseline features
and the number of errors and dividing it by the number
of baseline features.

Accuracy ¼ baselinej j− Errorj j
baselinej j

Figure 11 shows the framework accuracy when ap-
plying the SIFT feature detector against the number of
sub-areas that the frame is divided into, ranging from
grids of 1 by 1 to 10 by 10. The accuracy generally
decreased as the degree of frame division increased. The

rate of decrease diminished as the frame was divided
into more sub-areas. The accuracy remains strictly
above 0.9 when the frame was divided into less than
10 sub-areas, but numerous configurations of rows and
columns achieved similar accuracy for up to 40–50 sub-
areas. Figure 11 implies that the SIFT feature detector
accuracy is affected by not only the degree of frame
division but also the grid dimensions.

Even so, the relationship between accuracy and de-
gree of frame division observed with the SIFT feature
detector cannot be immediately generalized to cover
other feature detectors. Additional investigation is re-
quired to determine how different feature detectors are
affected by spatial frame division, both in terms of ac-
curacy and performance gains.

6.3 A Comparison Study with Hadoop

It is important to consider how the PRESA framework
compares to existing technologies for utilizing comput-
ing clusters. One such alternative for improving the per-
formance of WAMI processing algorithms is to simulta-
neously run many instances of the algorithm on differ-
ent sets of the image sequence on a distributed system
like Hadoop.

To test the performance of SIFT detector, an OpenCV
image processing system on Hadoop was built. The
SIFT detector algorithm was modified to work with
Hadoop framework. The Hadoop YARN framework is
designed to run each worker on a resource container
that is similar to OpenVZ container. Each mapper pro-
cess one frame to and output all SIFT key points. The
experiment tracks the frame rate for different number of
mappers (containers) in Hadoop. Figure 12 compares
the output frame rates between PRESA and Hadoop.

Figure 11 SIFT accuracy relative to baseline.
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When provided with equivalent computing hardware,
the PRESA framework manages to exceed Hadoop in
terms of output frame rate. The framework EFR was
significantly higher than the output frame rate from
the Hadoop tests. However, the framework behaves
quite differently when additional containers were added
compared to when additional mappers were added to
Hadoop. The framework EFR followed a distinct con-
cave down curve while the Hadoop output frame rate
was relatively flat. The results demonstrated that the
divide-and-conquer method can achieve better perfor-
mance compared to simply parallelizing by frames.
Additional metrics may provide better insight into the
fundamental differences between the two methodologies.

7 Conclusions

This paper presents a novel divide-and-conquer strategy
that enables us to track suspicious targets in huge
WAMI data streams in a pseudo-real-time manner. By
identifying and assigning certain sub-areas of a WAMI
picture to a container-based virtual machine (VM), in
which resources are managed elastically corresponding to
the computing task requirements. The proposed Cloud
Computing platform can accelerate the processing speed
of the areas where suspicious objects are allocated.
Through intensive experiments, we have verified the effec-
tiveness of the proposed scheme.

While our work has conceptually validated the
pseudo-real-time WAMI process, there are still several
challenging issues to be solved before the proposed
scheme can be adopted in real-world applications. The
team is exploring solutions from different aspects: 1)
investigating more flexible and adaptive frame division

methods to minimize impact on feature detection quali-
ty; 2) adapting architecture level optimization that
boosts the processing speed; 3) designing human-
machine interface that allows human rationale be inte-
grated into this dynamic tracking framework; 4) explor-
ing whether individual processing of each container can
provide important information to the client to help de-
cision making; and 5) investigating the potential optimal
number of frame sections that can be accelerated given
a certain number of nodes and containers.
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