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ABSTRACT

For spectrum sensing, energy detection has the advantages of low complexity, rapid analysis, and requires no knowledge
of the transmission signal, which makes it suitable for a wide range of applications. However, under low signal-to-noise
ratio conditions, the required window length (or the time-bandwidth product) for energy detection to achieve a desired
detection performance is large. In addition, conventional energy detection assumes that the detection tests are independent,
that is, there is no overlap between individual detection tests. These properties significantly reduce the detection speed
when energy detection is used for the continuous monitoring over a communication channel for the detection of signal
transmission activities. In this paper, we propose a sliding window detection analysis with overlap among multiple tests.
Algorithms for effective performance analysis of the proposed sliding window energy detection are proposed. The impact
of window length on distribution of detection time is investigated. Simulation results on the proposed sliding window
energy detection are also compared with the theoretically predicted and conventional energy detection performance
estimates. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Energy detection is one of the most commonly used
approaches for spectrum sensing [1]. The detector oper-
ates by comparing the energy of the received waveform
over a time window to a threshold determined by the noise
floor. An energy detector was first investigated in [2] for
the detection of unknown deterministic signals over a band
limited additive white Gaussian noise channel. Using the
sampling theory, it was shown that the test statistic of the
energy detection follows a chi-square distribution under H0
(no signal transmission) and the non-central chi-square dis-
tribution under H1 (signal transmission exists), based on
which the exact false alarm rate and detection probabil-
ity were derived. In [3,4], the energy is extended for the
detection of unknown signals over different types of fad-
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ing channels. Closed-form expressions for the detection
probabilities over Rayleigh, Nakagami, and Rician fading
channels were presented. In [5], the optimal sensing time
of the secondary user using energy detection is derived
to maximize the average throughput and protect the pri-
mary user from harmful interference. In [6], performance
of two different energy detection methods were compared,
where the first (averaging) approach uses the signal power
over the whole bandwidth, and the second (maximum)
approach detects signal power over individual fast Fourier
transform bins.

Conventional methods on energy detections as those
mentioned previously assume that the detection tests are
independent. However, the assumption only holds when
the detection tests use independent data sets from non-
overlapping testing windows as in Figure 1(a). As a result,
independent tests can only be performed as rate limited
by the testing window length. This will cause perfor-
mance degradation when energy detection is used to mon-
itor a communication channel for the detection of signal
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Figure 1. Independent tests versus sliding window tests.

transmission activities. When the window length is large
(which is necessary for detection when the signal-to-noise
ratio (SNR) at the detectors receiver is low), the indepen-
dent requirement will significantly increase the detection
time and degrade detection speed. Figure 1(b) illustrates
the idea of the sliding window test, where tests are per-
formed over every fixed time interval independent to length
of the test window.

Testing windows in the sliding window test have over-
laps, and as a result, test statistics in the sliding window
test are correlated over time. This correlation significantly
complicates the design and performance analysis of the
sliding window test for spectrum sensing. To address the
problem, in this paper, first an effective approximation and
a numerical method are proposed for the evaluation of
the false alarm of the sliding window energy detection.
Interestingly, it is observed that with the same window
length and testing threshold, the false alarm rate of a slid-
ing window test and that of the independent test have a
relationship that is almost linear. Based on the results,
the design of constant false alarm sliding window energy
test is addressed. Then using the same approach, detection
probabilities of the sliding window test are evaluated for
a given window length and an SNR. The corresponding
distribution of the detection time is also obtained, which
allows the determination of the optimal window length
that minimizes the expected detection time. Then simula-
tions are conducted on the sliding window energy detection
to show the simulated detection performance versus the
theoretical prediction and performance of the conventional
energy detection.

The paper is organized as follows. Section 2 briefly
reviews conventional energy detection under the indepen-
dent assumption [2]. For the sliding window test using
energy detection, Section 3 presents the algorithms for
false alarm analysis and proposes a test design process.
The evaluation of the detection probability and the anal-
ysis of detection performance are presented in Section 4.

Section 5 presents simulation results of the proposed slid-
ing window energy detection. Section 6 summarizes the
paper with concluding remarks.

2. INDEPENDENT ENERGY
DETECTION TEST REVIEW

First, for readers’ convenience, the main notations used
in this paper for the description of energy detection are
listed as follows, which follow mostly the notations in [3].

s.t/ received signal waveform

n.t/ noise waveform

N0 two-sided noise power spectrum density

Ps signal power

W one-sided bandwidth in hertz

�t sampling interval = 1
2W

T testing window length

L discrete window length T D L�T

� unit time signal-energy-to-noise density
ratio (SNR): Ps�t

N0
D Ps

N02W

� threshold used by energy detector

N.�, �2/ Gaussian density with mean �
and standard deviation �

�2
˛ Chi-square distribution with degree of

freedom ˛

�2
˛.ˇ/ non-central Chi-square distribution

with degree of freedom ˛ and
non-centrality parameter ˇ

For energy detection, the received waveform is given by

y.t/ D

�
s.t/C n.t/

n.t/
(1)

As shown in [2], for the decision process, the baseband
signals and the passband signals are equivalent for the deci-
sion process. For the sake of convenience, as in [3], the
received signal is assumed to be at the baseband and has a
limited bandwidth. According to sampling theory, one can
express the noise process as [2]

n.t/ D
1X

iD�1

nŒi�sinc.2Wt � i/ (2)

where sinc.x/ D sin.�x/
�x , and nŒi� D n. i

2W / D n.i�t/ is
a discrete white noise random process with zero mean and
variance 2N0W, that is,

nŒi� � N.0, 2N0W/ (3)
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Similarly, for the signal, one has

s.t/ D
1X

iD�1

sŒi�sinc.2Wt � i/ (4)

where sŒi� D s.i�t/. For a test using the data in a time
window [0 T], the test statistic of the energy detection is
given by [2]

V D
1

N0

Z T

0
y.t/2dt D

1

2WN0

2TWX
iD1

yŒi�2

D
1

2WN0

LX
iD1

yŒi�2

(5)

where

L D 2TW (6)

is the time-bandwidth product. Assuming 2TW is an inte-
ger value for the sake of simplicity, then under H0, one
has

yŒi�
p

2WN0
� N.0, 1/ (7)

where the symbol “�” in (7) should be interpreted as
“following the distribution of,” and

V � �2
L. (8)

Under H1, one has

yŒi�
p

2WN0
� N

�
sŒi�

p
2WN0

, 1

�
(9)

and

V � �2
L.	/ (10)

where

	 D
1

2WN0

LX
iD1

sŒi�2

D
1

N0

Z T

0
s.t/2dt D

PsT

N0

(11)

is the noncentrality parameter. The probability density
function (pdf) of the test statistic is [7,8]

fV .x/ D

8̂̂̂
<
ˆ̂̂:

1
2L=2� .L=2/

xL=2�1e�x=2

x � 0 , H0
1
2 e�.xC�/=2. x

�
/L=4�1=2IL=2�1.

p
	x/

x � 0 , H1

(12)

where 
 .�/ denotes the Gamma function and Iv.z/ is a
modified Bessel function of the first kind. The probabil-
ity of false alarm (under H0) and probability of detection
(under H1) are given by [4]

Pf D P.V > � jH0/ D 1 �
�.L=2, �=2/


 .L=2/
(13)

where �.k, z/ is the lower incomplete Gamma function, and

Pf D P.V > � jH1/ D Q L
2 .
p
�,
p
�/

(14)

where QM.a, b/ is the Marcum Q-function [9].
The evaluations of (13) and (14) apply to energy tests

that are independent. For the sliding window test, test
statistics of multiple tests are correlated and the above eval-
uations are no longer valid. In Sections 3 and 4, novel
algorithms will be developed to address the problem of
correlated test statistics.

3. FALSE ALARM EVALUATION FOR
SLIDING WINDOW TEST USING
ENERGY DETECTION

Suppose the window length of the sliding window energy
test is L in discrete time and the tests are conducted at dis-
crete time Œk�, where k D 1, 2, 3, : : :. The corresponding
test statistics are

VŒk� D
1

2WN0

kX
iDk�LC1

yŒi�2

D
1

N0

Z k�t

.k�L/�t
y.t/2dt

(15)

Suppose the test starts from k D 1, under hypothesis H0,
the sliding window false alarm probabilities, Pfs, at the
following testing times are

PfsŒ1� D P.VŒ1� > � , H0/ (16)

PfsŒ2� D P.VŒ2� > � jVŒ1� < � , H0/ (17)

PfsŒ3� D P.VŒ3� > � jVŒ1� < � , VŒ2� < � , H0/ (18)

PfsŒ4� D P.VŒ4� > � jVŒ1� < � , VŒ2� < � , VŒ3� < � , H0/

(19)

The evaluation of (16) follows directly (13). However,
the exact evaluations of (17)–(19) are increasingly more
complicated. In this paper, the following approximation
is used for the evaluation of false alarm rates in sliding
window test

PfsŒk� D P.VŒk� > � jVŒk � 1� < � , H0/ D PFAs (20)

which is conditioned only on the previous testing result that
has the biggest impact on the current test at time k. For the
evaluation of (20), Figure 2 shows the relationship between
two consecutive test statistics where VŒk�1� D aCb is the
sum of two independent random variables a and b. Under
H0, one has a � �2

1 and b � �2
L�1; where VŒk� D b C c

is the sum of b, which is the common part with VŒk � 1�
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Figure 2. Test statistics of two consecutive tests in the sliding
window test.

and random variable c. c follows �2
1 and is independent to

b and a. To evaluate PFAs, the posterior probability density
function of b conditioned on VŒk � 1� � � , denoted as,
pb.bja C b � �/, needs to be first evaluated. From Bayes
rule, one has

pb.bjaC b < �/ / pb.b/
Z ��b

0
pa.a/da (21)

where pa../ denotes probability density function (pdf) for
a and pb../ denotes pdf for b. For the evaluation of (20),
it follows

PFAs D 1 � P.VŒk� � � jVŒk � 1� � �/

D 1 �
Z �

0

"
pb.bjaC b � �/

Z ��b

0
pc.c/dc

#
db

(22)

The direct evaluation of (21) and (22) is difficult. In this
paper, a numerical approach is used. Note that the posterior
pdf (21) is non-zero only over interval Œ0 ��, which allows
the use of a discrete approximation to accurately represent
the pdf. To do this, the interval Œ0 �� is evenly divided
into N pieces whose probability masses are proportional
to the probability density (21) at their center (sampling)
points. The discrete approximation of pb.bja C b � �/ is
obtained as

pbŒijaC b < �� /

pb

�
�

N

�
i �

1

2

��Z �
N .N�i� 1

2 /

0
pa.a/da

i D 1, : : : , N

(23)

and
NX

iD1

pbŒijaC b < �� D 1 (24)

For the evaluation of (22), the following approximation
is used

Z �

0

"
pb.bjaC b � �/

Z ��b

0
pc.c/

#
db �

NX
iD1

pbŒijaC b � ��
Z �

N .N�i� 1
2 /

0
pc.c/dc

(25)

Any desired level of evaluation accuracy can be achieved
by using sufficiently large N. Figure 3 shows PFAs (22)
for the sliding window energy test versus Pf (13) of the

independent window test when they use the same win-
dow length and the same testing threshold. It can be
seen that for the set of window lengths considered L D
5, 50, 100, 200, and 300, PFAs is smaller than Pf by
a reduction factor ranging from 1 (no reduction, when the
window length is 1) to approximately 0.1 (for long win-
dow lengths up to 300), which is due to the correlation of
the tests statistics in the sliding window tests. Interestingly,
it is observed that for a given window length, Pf versus
PFAs (with the same testing threshold) is almost linear,
which makes the mapping easy and will greatly simplify
the design of a sliding window test.

For the design of the sliding window energy test, we are
interested in the cumulative false alarm rate over a long
period of K tests, denoted as PF.K/, which is related to
PFAs by

PF.K/ D 1 � .1 � PFAs/
K (26)

Figure 3. PFAs for the sliding window test versus Pf for indepen-
dent window test.

Figure 4. False alarm rates of the corresponding independent
window PF .500/ D 0.01.

Wirel. Commun. Mob. Comput. (2015) © 2015 John Wiley & Sons, Ltd.
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The required false alarm rate for the sliding window test is
derived from (26) as

PFAs D 1 � .1 � PF.K//
1=K (27)

For example, assuming K D 500 and PF.500/ D 0.01,
from (27), one has the required PFAs D 2.1 � 10�5. Based
on the mapping between Pf and PFAs for the window
lengths of interest (as shown in Figure 3), the correspond-
ing Pf can be evaluated, which from (22) leads to the
desired test threshold � .

Figure 4 shows, when PF.500/ D 0.01, the false alarm
rates of the independent tests Pf versus the window length
L. It can be seen that under the same cumulative false alarm
rate requirement for the sliding window tests, a larger win-
dow length L allows a higher false alarm rate Pf of the
corresponding single independent test.

4. THE EVALUATION OF
DETECTION PROBABILITY OF A
SLIDING WINDOW TEST USING
ENERGY DETECTION AND
PERFORMANCE ANALYSIS

Most detection tests in the literature assume that under H1,
the signal always exists in the testing window. In this paper,
we investigate a more general case, which allows detec-
tion in the presence of transition from H0 to H1 and shows
the impact of window length on the detection performance.
Figure 5 illustrates the detection process when the slid-
ing window length L D 4, and without loss of generality,
the transition from H0 to H1 occurs at 0. The detection
probabilities of the sliding window test, Pds, are

PdsŒ1� D P.VŒ1� > � , H1/ (28)

PdsŒ2� D P.VŒ2� > � jVŒ1� < � , H1/ (29)

PdsŒ3� D P.VŒ3� > � jVŒ1� < � , VŒ2� < � , H1/ (30)

Figure 5. An illustration of the detection process of the sliding
window test.

where the test statistics VŒk� are given by (15) and the
testing threshold � is determined based on the require-
ment on the cumulative false alarm rate for the sliding
window test (26) using the design procedure proposed in
Section 3. As the case of the false alarm evaluation, the
exact evaluations of these detection probabilities are very
complicated especially for long window lengths. Instead,
the same approximation proposed in Section 3 is used for
the evaluation of sliding window detection probabilities,
that is,

PdsŒk� D P.VŒk� > � jVŒk � 1� < � , H1/ D PDecs (31)

The same approach for the evaluation of false alarm of
the sliding window test can be used for the evaluation
of the detection probabilities. The two consecutive test
statistics under H1 bear the same relationship as illustrated
in Figure 2. Similar to 21, one has

PDecs D 1 � P.VŒk� � � jVŒk � 1� � � , H1/

D 1 �
Z �

0

"
pb.bjaC b � �/

Z ��b

0
pc.c/dc

#
db

(32)

But under H1, the posterior density pb.bja C b � �/ is
evaluated under the condition that

a � �2
1.h�/, h D 0, 1 (33)

where h is 0 when at k � 1, there is no signal exists
in the first �t portion of the testing window, otherwise
h D 1, and

� D
Ps�t

N0
D

Ps

N02W
(34)

is defined as the unit time signal-energy-to-noise density
ratio, namely, the SNR. For the common part b of VŒk � 1�
and VŒk� (Figure 2), one has

b � �2
L�1.m�/, m D 1, : : : , L � 1 (35)

where m is determined by the number of �t when the sig-
nal exists in the b portion of the testing window. And under
H1, c follows �2

1.�/. To evaluate (32), the same numerical
approach as in (25) is used.

Assuming the switch from H0 to H1 occurred at time
0, Figure 6 shows the detection probabilities of a slid-
ing window test for a set of window lengths (L D

5, 50, 100, 200, 300) from discrete testing times 1 to 400.
When the unit time signal noise ratio (34), that is, SNR,
is 0.4, then the required cumulative false alarm rate
PF.500/ D 0.01. It can be seen that for a given window
length, after the switching from H0 to H1, the detection
probabilities increase as the signal containing portion of
the testing window increases. The detection probability
reaches its peak when the signal portion fills the whole
window length. As the window length increases, the peak

Wirel. Commun. Mob. Comput. (2015) © 2015 John Wiley & Sons, Ltd.
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Figure 6. Detection probabilities of sliding window test PDecs

versus time when and PF .500/ D 0.01.

Figure 7. Probability mass function of detection time for the set
of window lengths when � D 0.4 and PF .500/ D 0.01.

detection probability of the sliding window test increases;
however, the rate of the increase in detection probability
decreases. After reaching the peak detection probability,
the detection probabilities of the following tests drop a cer-
tain amount due to correlations between the consecutive
tests. It can be seen that different window lengths have dif-
ferent trade-offs between the speed of the detection and the
achievable detection probability.

Figure 7 shows the distributions of detection time for the
set of window lengths considered over a time period of 400
testing times. The probability mass function of detection
time is obtained from PDecs (32) by

PD.k/ D
k�1Y
iD1

.1 � PDecs.i//PDecs.k/ (36)

For window lengths ranging from 20 to 300, Figure 8
shows the cumulative probabilities of detection at the end
of the testing period 400; Figure 9 shows their expected

Figure 8. Cumulative probability of detection at time 400 when
� D 0.4 and PF .500/ D 0.01.

Figure 9. Expected detection time when � D 0.4 and
PF .500/ D 0.01.

detection time. Note that when there is no detection during
the testing, which occurs quite often with small window
lengths (as indicated in Figure 9) the detection time is
counted as 400. It can be seen that for the given unit time
SNR ratio, the expected time versus the sliding window
length takes a convex curve. When � D 0.4 and PF.500/ D
0.01, the optimal window length for the sliding window
energy detection minimizes the expected detection time,
is for L D 120. Similar detection performance analysis
of the sliding window tests can be conducted for different
unit time signal-energy-to-noise-density ratio, that is, SNR,
levels. The performance analysis of the sliding window
energy detection is conducted assuming the detector side
unit time SNR density ratio � is known. In practice, when
� is not known exactly, the analysis needs to be conducted
over the range of � values of interest for the selection of an
appropriate testing window length.
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5. SIMULATION RESULTS

In this section, we first compare the simulated sliding
window detection performance to the theoretical perfor-
mance evaluation of the sliding window energy detection
based on the derivation in Sections 3 and 4. Then com-
parison between the sliding window energy detection and
conventional energy detection will be presented to show
the advantage of the sliding window energy detection for
continuous channel monitoring.

5.1. Simulated performance versus
theoretical performance of the sliding
window test

The simulation for sliding window energy detection is
configured as follows. Without loss of generality, it was
assumed that the sliding window test is conducted through
discrete time 1 to discrete time N, for a total of N tests. The

Figure 10. Exemplar simulation data � D 1 and N D 500.

Figure 11. Simulated versus theoretically predicted probabil-
ity mass function (pmf) of the detection time for L D 200,

P.300/ D 0.01, N D 500, and � D 0.5.

actual simulation data were generated form discrete time
�L to N, where L is the length of the sliding window.

Under H0, at each sample time, the sample data
were generated from N.0, 1/ based on (7). Under H1,
it is assumed that the signal arrived at the detector at
discrete time 1, and starting form time 1, the sample
data were drawn from N.

p
�, 1/ based on (9)–(11) and

(34); for �L to 0, the sample data were drawn from
N.0, 1/.

Figure 10 shows the data from one simulation run, when
N D 500, L D 200, and � D 1. Here, the value of �,
the SNR, was chosen for illustration purposes only. Actual
� used in the simulation is smaller, which makes the data
under H0 and H1 hard to distinguish.

For the first case, the sliding window detector has length
L D 200 and was designed to have P.300/ D 0.01 (26),
simulation time N D 500 and the signal energy per sample
time-to-noise density ratio � D 0.5.

Under H0, the simulated cumulative false alarm rate over
300 tests is NP.300/ D 0.0067, which is an average over
10,000 simulation runs. This is smaller than the designed
cumulative false alarm rate of 0.01 because of the approx-
imation used in (20), which tends to give a conservative
(larger) approximation of actual false alarm rate evaluation
at single testing times (17)–(19). However, this conserva-
tive design always guarantees the cumulative false alarm
rate requirement to be met.

Under H1, Figure 11 shows the simulated probabil-
ity mass function (pmf) of the detection time (from
10,000 simulations) compared with the theoretical predic-
tion using the method in Section 4. It can be seen that the
theoretical prediction characterizes well the trend of simu-
lated distribution. The cumulative probability of detection
over the N D 500 tests is 0.9976, while the theoreti-
cally predicted probability of detection over N D 500 tests
is 1. The theoretical prediction on detection probability

Figure 12. Simulated versus theoretically predicted probabil-
ity mass function (pmf) of the detection time for L D 200,

P.300/ D 0.01, N D 500, and � D 0.5.
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is slightly optimistic (higher) than the actual simulated
results. Similar to the false alarm case, this is caused by
the approximation in (31) for evaluating the single time
probability of detection of the sliding window test (29)
and (30), which results in evaluations slightly larger than
their actual values. The predicted average detection time is
125.2, while the simulated detection time is 153.5, which
corresponds to a 22% increase. This is again explained by
the larger than actual theoretical prediction of the single
time detection probability, which makes the predicted pmf
shift towards smaller detection times.

In the second case, we increased the window length to
L D 300, and the rest of the simulation configuration
remained the same. Under H0, the simulated cumulative
false alarm rate over 300 tests is NP.300/ D 0.0062, a
similar value as in the first case.

Figure 12 shows the pmf of the detection time of the
sliding window energy detector. The simulated cumu-
lative detection probability over 500 tests is 1, which
is the same as the theoretical prediction. The simulated
average detection time is 178.6, and the theoretical pre-
diction is 147.3. Similarly, the actual detection time has
a 21% increase over the theoretically predicted value,
because of the slightly biased (larger than actual value)
approximation of single time test detection probability
using (31).

5.2. Sliding window energy detection
versus conventional energy detection

In this section, performance of the proposed sliding win-
dow energy detection is compared with that of the con-
ventional energy detection. Suppose window length of the
conventional energy detection is equal to K as in the spec-
ification of the cumulative false alarm rate in (26), and
the false alarm rate of the energy detection is set as P.K/.
Using the scenario specified in Section 5.1, the conven-
tional energy detection is applied only once at time K,
which uses data from time 1 to K. Note that although the
sliding window energy detection is more complex to design
than the conventional energy detection, they have the same
level of implementation complexity because both detection
algorithms involve mainly the integration of signal energy
over time (5).

When K D 300 and P.K/ D 0.01, it is easy to
obtain that the conventional energy detection uses a test-
ing threshold of 359.9 and has a detection probability
of 0.997.

While the sliding window energy detection with L D
300 uses a testing threshold of 389.6 and has a simulated
cumulative detection probability of 0.973 over time period
if 1 to K. The average detection time for the sliding window
detection is 171.8 over the same time period.

For sliding window energy detection with L D 200, the
cumulative detection probability over time 1 to K is 0.9609,
while the average detection time over the same time period
is 146.1.

Comparing the detection performance during time 1
to K, the conventional energy detection has the highest
detection probability and the largest detection time K.
The sliding window tests has reduced detection power but
significantly reduced detection time. And it is worth point-
ing out that in this comparison, the conventional energy
detection has the unfair advantage of knowing the starting
time of the signal. If the conventional energy detection test
is conducted at a time point less than K, its detection power
would be significantly reduced.

From the previously mentioned comparison, it can be
seen that the sliding window energy detection is suit-
able for constantly monitoring a spectrum channel for
fast detection of signal presence under low SNR scenar-
ios, where effective signal detection is only possible with
large time-bandwidth product (6).† While the conventional
energy detection is used to check occasionally if signal is
prepense over a channel.

6. CONCLUSIONS

The paper investigates performance of the energy detec-
tion when used in a sliding window fashion for monitoring
signal transmission activities in a frequency band. Unlike
conventional independent energy tests, test statistics in
the sliding window test are correlated over time, which
complicates the design of the test and the evaluation of
the testing performance. In this paper, for the design of
the sliding window energy detection, algorithms are pro-
posed to effectively evaluate the false alarm rate and the
detection probability of the proposed detection algorithm.
It is observed that, with the same window length and
testing threshold, the false alarm rate of the sliding win-
dow energy test and that of the independent test have
a relationship that is almost linear, which is further uti-
lized to simplify the false alarm evaluation. Then the
distribution of the detection time is obtained for given win-
dow length and SNR, which allows the evaluation of the
impact of window length on the performance of the sliding
window test.

Based on the proposed design, simulations of the sliding
window energy detection were conducted. It was shown
that the theoretical prediction of the sliding window energy
detection performance characterizes well the trend of sim-
ulated distribution of the detection time. While a small
bias does exist in the theoretical evaluation because of
the approximation used the evaluation procedure. Perfor-
mance of the sliding window energy detection was then
compared with that of the conventional energy detection. It
was shown that the sliding window energy detection offers
faster detection speed, which makes it suitable for contin-
uous monitoring of spectrum channels for the detection of
a signal in low SNR conditions.

†In high SNR detection scenario, the speed advantage of the sliding

window detection is negligible due to overall short detection time.
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